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Abstract
There are two approaches to atomic physics: (1) structural approach and

(2) empirical approach (chemistry). The structural approach uses methods
of atomic physics and, in particular, quantum mechanics. The structural ap-
proach admits one to investigate the structure and arrangement of an atom
(nucleus and electronic envelope). The empirical approach uses only experi-
mental methods, in particular, the periodic system of chemical elements. It in-
vestigates the properties of chemical elements and their chemical reactions. It
can predict new chemical elements and their properties (corresponding quan-
tum numbers), but it cannot investigate the atom arrangement (nucleus and
electronic envelope).

In the contemporary theory of elementary particles one has only the em-
pirical approach. It admits one to obtain quantum numbers of elementary
particles. It admits one to systematize elementary particles, to investigate
their interactions, to predict new elementary particles, but it does not ad-
mit one to investigate an arrangement of elementary particles. Structural
approach to the elementary particle theory does not exist now. The paper
is devoted to development of the structural approach to the elementary par-
ticle theory. Being an axiomatic conception, the quantum theory cannot be
used in the construction of the structural approach. Considering the quantum
motion as statistical description of stochastically moving elementary particle,
one succeeded to obtain some elements of the elementary particles arrange-
ment. In particular, it appears, that a relativistic elementary particle gener-
ates some force field (κ-field), which is responsible for the pair production.
Some properties of the κ-field are investigated in this paper. Stochastic mo-
tion of elementary particle can be freely explained by properties of the discrete
space-time geometry, which admits one to construct the skeleton conception
of elementary particles.
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1 Introduction

There are two different approaches to the elementary particle theory: (1) structural
approach and (2) empirical approach. At the structural approach one attempts
to investigate an arrangement of elementary particles and their structure. At the
empirical approach one distinguishes between the different elementary particles by
some ”quantum numbers” ascribed to any elementary particle. These ”quantum
numbers” (parameters) are: mass, electric charge, spin, magnetic moment, baryon
charge, isospin and so on. One can classify elementary particles by these parameters
an predict new elementary particles on the basis of this classification. However, one
cannot connect these parameters with the structure of elementary particles, because
in the contemporary theory the structural approach is absent.

What is the structural approach one can understand in the example of the atomic
theory, where there are both structural approach and empirical approach. At the
structural approach one investigates the atom arrangement: its nucleus and elec-
tronic envelope. One uses the quantum mechanics, which admits one to calculate
parameters of electronic envelopes of different atoms. At the empirical approach
one classifies chemical elements by their properties, generated by parameters of elec-
tronic envelopes of their atoms. At the empirical approach one does not interested in
structure and arrangement of atoms. At the empirical approach one uses periodical
system of chemical elements which has been obtained from experiment. Empirical
approach does not permit to investigate the atomic structure. Investigation methods
of empirical approach cannot be used at investigation of the atomic structure. The
structural (physical) approach is more fundamental, than the empirical (chemical)
approach.

In the contemporary theory of elementary particles the structural approach is
absent. As a matter of fact the contemporary elementary particle theory is a chem-
istry (not physics) of elementary particles. Methods of the contemporary theory
of elementary particles do not admit to investigate structure (arrangement) of ele-
mentary particles. They admits only to ascribe quantum numbers to different ele-
mentary particles and distinguish between them by these quantum numbers. The
reason of such a situation is a consideration of the quantum laws as fundamental
laws of nature, whereas they describe only a mean motion of quantum particles.
In the same way the laws of the gas dynamics describe only the mean motion of
the gas molecules. Basing on the laws of the gas dynamics, one cannot investigate
structure of gas molecules . In this paper the conceptual problems of the microcosm
physics will be considered. The structural approach is based on a new conception
of elementary particles.

It should note that we distinguish between a conception and a theory. A con-
ception does not coincide with a theory. For instance, the skeleton conception of
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elementary particles [1] distinguishes from a theory of elementary particles. A con-
ception investigates connections between concepts of a theory. For instance, the
skeleton conception of elementary particles investigates the structure of a possible
theory of elementary particles. It investigates, why an elementary particle is de-
scribed by its skeleton (several space-time points), which contains all information on
the elementary particle. The skeleton conceptions explains, why dynamic equations
are coordinateless algebraic equations and why the dynamic equations a written in
terms of the world functions. However, the skeleton conception does not answer the
question, which skeleton corresponds to a concrete elementary particle and what is
the world function of the real space-time. In other words, the skeleton conception
deals with physical principles, but not with concrete elementary particles. The con-
ception cannot be experimentally tested. However, if the world function of the real
space-time geometry has been determined, and correspondence between a concrete
elementary particle and its skeleton has been established, the skeleton conception
turns to the elementary particle theory. The theory of elementary particle (but not
a conception) can be tested experimentally.

In other words, it is useless to speak on experimental test of the skeleton con-
ception, because it deals only with physical principles. Discussing properties of a
conception, one should discuss only properties of the concepts and logical connection
between them, but not to what extent they agree with experimental data. For in-
stance, the statement, that dynamics of deterministic particles is described in terms
of Lagrangians is a statement of the particle dynamics conception. It does not state
what namely Lagrangian is used for some concrete particle. One obtains a theory of
particle dynamics, when it is pointed which Lagrangian describes any particle. The
Ptolemaic conception of the planet motion differs from the Newtonian conception of
the planet motion, although experimentally both conceptions give the same result
for the first six planets of Solar system.

To use the quantum theory in the structural approach, one needs to replace
the axiomatic conception of the quantum theory by the model conception. For
instance, the wave function is the main object of quantum mechanics. But what is
the wave function? From where did it appear? Nobody knows. The wave function
is a method of description of any nondissipative continuous medium [2]. The fact
that the Schrödinger equation describes a nonrotational flow of some ”quantum”
fluid was known from the beginning of the quantum mechanics [3, 4]. However, in
these cases one started from the Schrödinger equation and quantum principles. One
failed to start from hydrodynamics and to conclude quantum description in terms
of the world function. To make this, one needs to integrate hydrodynamic equations
and to present them in terms of hydrodynamic potentials (Clebsh potentials [5, 6]).
Thereafter one can construct the wave function from hydrodynamic potentials and
obtain description in terms of the wave function. Generally speaking, the dynamic
equation in terms of the wave function is nonlinear. It becomes linear only for
nonrotational flow. But linearity of dynamic equations written in terms of the
world function is considered as a principle of the quantum mechanics.

But from where does the continuous medium appear at the description of quan-
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tum particles? Any quantum particle is stochastic particle, and there are no dynamic
equation for description of a single stochastic particle. One can describe only a mean
motion of a quantum particle. One needs to consider many independent identical
stochastic particles. These particles form a statistical ensemble, which can be con-
sidered as a set of stochastic independent particles. The statistical ensemble is a
dynamic system of the type of a continuous medium. This statistical ensemble may
be considered as a gas of noninteracting stochastic particles. This gas (continuous
medium) is described by the wave function. Such a description is convenient, be-
cause the dynamic equation is linear in terms of the wave function for nonrotational
flows. Such a description explains, from where the wave function appears, and what
it means.

Statistical ensemble E [Sst] of stochastic particles Sst is a set of many independent
identical stochastic particles Sst. Stochastic particle Sst is not a dynamical system,
and there are no dynamic equations for Sst. However, the statistical ensemble E [Sst]
of stochastic particles Sst is a dynamic system, and there exist dynamic equations
for E [Sst]. The dynamic system E [Sst] is a dynamic system of the type of a contin-
uous medium (fluid). Dynamic equations for E [Sst] describe a mean motion of the
stochastic particle Sst. Formally the statistical ensemble E [Sst] can be considered
as a set (not statistical ensemble) of identical deterministic particles Sd interacting
between themselves by means of some force field. If this force field is considered
as an attribute of the stochastic particle, then, investigating properties of this force
field, one may investigate a structure of the stochastic particle.

For instance, the action for the statistical ensemble of stochastic particles Sst has
the form

AE[Sst] [x,u] =

∫ ∫

Vξ

{
m

2
ẋ2 +

m

2
u2 − ~

2
∇u

}
ρ1 (ξ) dtdξ, ẋ ≡dx

dt
(1.1)

The variable x = x (t, ξ) describes the regular component of the particle motion.
The independent variables ξ = {ξ1, ξ2, ξ3} label elements (particles) of the statistical
ensemble E [Sst]. The variable u = u (t,x) describes the mean value of the stochastic
velocity component, ~ is the quantum constant, ρ1 (ξ) is a weight function. One may
set ρ1 = 1. The second term in (1.1) describes the kinetic energy of the stochastic
velocity component. The third term describes interaction between the stochastic
component u (t,x) and the regular component ẋ (t, ξ). The operator

∇ =

{
∂

∂x1
,

∂

∂x2
,

∂

∂x3

}
(1.2)

is defined in the space of coordinates x.
Formally the action (1.1) describes a set of deterministic particles Sd, interact-

ing via the force field u. The particles Sd form a gas (or a fluid), described by
the variables ẋ (t, ξ) = v (t, ξ). Here this description is produced in the Lagrange
representation. Hydrodynamic description is produced in terms of density ρ and
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velocity v, where

ρ = ρ1J, J ≡ ∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
(1.3)

Nonrotational flow of this gas is described by the Schrödinger equation [7].
The dynamic equation for the force field u is obtained as a result of variation of

(1.1) with respect to u. It has the form

u = u (t,x) = − ~
2m

∇ ln ρ (1.4)

The vector u describes the mean value of the stochastic velocity component of the
stochastic particle Sst. In the nonrelativistic case the force field u is determined by
its source: the fluid density ρ.

In terms of the wave function the action (1.1) takes the form [7]

A[ψ, ψ∗] =

∫ {
i~
2

(ψ∗∂0ψ − ∂0ψ
∗ · ψ)− ~2

2m
∇ψ∗ ·∇ψ +

~2

8m
ρ∇sα∇sα

}
d4x (1.5)

where the wave function ψ =
{

ψ1
ψ2

}
has two complex components.

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (1.6)

σα are 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.7)

Dynamic equation, generated by the action (1.5), has the form

i~∂0ψ +
~2

2m
∇2ψ +

~2

8m
∇2sα · (sα − 2σα) ψ − ~2

4m

∇ρ

ρ
∇sασαψ = 0 (1.8)

In the case of one-component wave function ψ, when the flow is nonrotational and
∇sα = 0, the dynamic equation has the form of the Schrödinger equation

i~∂0ψ +
~2

2m
∇2ψ = 0 (1.9)

Thus, the Schrödinger equation is a special case of the dynamic equation, generated
by the action (1.1) or (1.5).

There are several interpretations of the Schrödinger particle Sst: (1) quantum
interpretation, (2) hydrodynamic interpretation, (3) dynamic interpretation.

At the conventional quantum interpretation the Schrödinger particle Sst is a
quantum particle, whose dynamics is described by the axiomatic Schrödinger equa-
tion (1.9). Any questions of the type: why the particle Sst is quantum and what
its parameters are responsible for its quantum behavior, are improper because of
axiomatic character of description.
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The hydrodynamic interpretation and dynamic interpretation are rather close.
According to hydrodynamic interpretation the action (1.1) describes a set of deter-
ministic particles interacting between themselves via the force field u. One cannot
consider a single particle, because in this case interaction between particles disap-
pears. The hydrodynamic description does not admit a consideration of a single
particle. When the action (1.1) describes a statistical ensemble (not a set of inter-
acting identical deterministic particles), the dynamic interpretation admits one to
consider experiments with a single stochastic particle. Experiments with the sta-
tistical ensemble can be realized as a set of experiments with identically prepared
stochastic particles. Motion of single particles will be different, in general, in differ-
ent experiments. However, result of the statistical handling of all experiments does
not depend on the way of the experiments realization. Experiments with a single
particle may be produced simultaneously at the same place or at different places
in different time. The statistical averaging gives the same result in all these cases.
For instance, the two-slit experiment can be produced with many electrons simul-
taneously, or with a single electron many times. Result of the statistical averaging
will be the same in all cases. It shows, that the action (1.1) describes a statistical
ensemble of stochastic particles, but not a gas of interacting deterministic particles.

Thus, the dynamic interpretations, when the action (1.1) describes the statistical
ensemble of stochastic particles is the most true interpretation, which does not close
the door for investigation of the stochastic behavior of quantum particles. The
reason of such a stochastic behavior may be an interaction of a particle with the
medium (vacuum, or ether), where the particle moves. The influence of the medium
remains the same in all single experiments.

2 Relativistic stochastic particle

The pair production phenomenon takes place only for relativistic quantum particles.
It is absent for classical particles. What is the reason of the pair production? Can it
be described dynamically? A dynamic description is impossible in the framework of
conventional axiomatic quantum theory. However, it is possible at the description of
Sst in terms of the statistical ensemble. In the case of relativistic stochastic particle
Sst the force field has its own degrees of freedom. It can escape from the source and
travel in the space-time. In the relativistic case one obtains the action

A [x, κ] =

∫ {
−mcK

√
gikẋiẋk − e

c
Akẋ

k
}

d4ξ, d4ξ = dξ0dξ (2.1)

K =

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, τ= ξ0 (2.2)

Here x = {xi (ξ0, ξ)} , i = 0, 1, 2, 3 are dependent variables, describing regular com-
ponent of the particle motion. The variables ξ = {ξ0, ξ} = {ξk} , k = 0, 1, 2, 3
are independent variables, labelling the particles of the statistical ensemble, and
ẋi ≡ dxi/dξ0. The quantities κl =

{
κl (x)

}
, l = 0, 1, 2, 3 are dependent variables, de-

scribing stochastic component of the particle motion, Ak = {Ak (x)} , k = 0, 1, 2, 3
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is the potential of electromagnetic field. We shall refer to the dynamic system,
described by the action (2.1), (2.2) as SKG, because irrotational flow of SKG is de-
scribed by the Klein-Gordon equation [8]. We present here this transformation to
the Klein-Gordon form. Here and farther a summation is produced over repeated
Latin indices (0÷ 3) and over Greek indices (1÷ 3). We present here transformation
of (2.1), (2.2) to the Klein-Gordon form.

Dynamic equations generated by the action (2.1), (2.2) are equations of the
hydrodynamical type. To present these equations in terms of the wave function, one
needs to integrate them in general form. The problem of general integration of four
hydrodynamic Euler equations

∂0ρ + ∇ (ρv) = 0 (2.3)

∂0v+ (v∇)v = −1

ρ
∇p, p = p (ρ, ∇ρ) (2.4)

seems to be hopeless. It is really so, if the Euler system (2.3), (2.4) is considered to
be a complete system of dynamic equations. In fact, the Euler equations (2.3), (2.4)
do not form a complete system of dynamic equations, because it does not describe
motion of fluid particles along their trajectories. To obtain the complete system of
dynamic equations, we should add to the Euler system so called Lin constraints [9]

∂0ξ + (v∇) ξ = 0 (2.5)

where ξ = ξ (t,x) = {ξ1, ξ2, ξ3} are three independent integrals of dynamic equations

dx

dt
= v (t,x) ,

describing motion of fluid particles in the give velocity field.
Seven equations (2.3) – (2.5) form the complete system of dynamic equations,

whereas four Euler equations (2.3), (2.4) form only a closed subsystem of the com-
plete system of dynamic equations. The wave function is expressed via hydrody-
namic potentials ξ = {ξ1, ξ2, ξ3}, which are known also as Clebsch potentials [5, 6].
In general case of arbitrary fluid flow in three-dimensional space the complex wave
function ψ has two complex components ψ1, ψ2 (or four independent real compo-
nents)

ψ =

(
ψ1

ψ2

)
=

( √
ρeiϕu1 (ξ)√
ρeiϕu2 (ξ)

)
, |u1|2 + |u2|2 = 1 (2.6)

It is impossible to obtain general solution of the Euler system (2.3), (2.4), but
one can partially integrate the complete system (2.3) – (2.5), reducing its order
to four dynamic equations for the wave function (2.6). Practically it means that
one integrates dynamic equations (2.5), where the function v (t,x) is determined
implicitly by equations (2.3), (2.4). Such an integration and reduction of the order
of the complete system of dynamic equations appear to be possible, because the
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system (2.3) – (2.5) has the symmetry group, connected with transformations of the
Clebsch potentials

ξα → ξ̃α = ξ̃α (ξ) , α = 1, 2, 3,
∂

(
ξ̃1, ξ̃2, ξ̃3

)

∂ (ξ1, ξ2, ξ3)
6= 0 (2.7)

3 Transformation of the action to description in

terms of the wave function

Let us consider variables ξ = ξ (x) in (2.1) as dependent variables and variables x
as independent variables. Let the Jacobian

J =
∂ (ξ0, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξi,k

∣∣∣∣ , ξi,k ≡ ∂kξi, i, k = 0, 1, 2, 3 (3.1)

be considered to be a multilinear function of ξi,k. Then

d4ξ = Jd4x, ẋi ≡ dxi

dξ0

≡ ∂ (xi, ξ1, ξ2, ξ3)

∂ (ξ0, ξ1, ξ2, ξ3)
= J−1 ∂J

∂ξ0,i

(3.2)

After transformation to dependent variables ξ the action (2.1) takes the form

A [ξ, κ] =

∫ {
−mcK

√
gik

∂J

∂ξ0,i

∂J

∂ξ0,k

− e

c
Ak

∂J

∂ξ0,k

}
d4x, (3.3)

K =

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, (3.4)

Let us introduce new variables

jk =
∂J

∂ξ0,k

, k = 0, 1, 2, 3 (3.5)

by means of Lagrange multipliers pk

A [ξ, κ, j, p] =

∫ {
−mcK

√
gikjijk − e

c
Akj

k + pk

(
∂J

∂ξ0,k

− jk

)}
d4x, (3.6)

Variation with respect to ξi gives

δA
δξi

= −∂l

(
pk

∂2J

∂ξ0,k∂ξi,l

)
= 0, i = 0, 1, 2, 3 (3.7)

Using identities
∂2J

∂ξ0,k∂ξi,l

≡ J−1

(
∂J

∂ξ0,k

∂J

∂ξi,l

− ∂J

∂ξ0,l

∂J

∂ξi,k

)
(3.8)
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∂J

∂ξi,l

ξk,l ≡ Jδi
k, ∂l

∂2J

∂ξ0,k∂ξi,l

≡ 0 (3.9)

one can test by direct substitution that the general solution of linear equations (3.7)
has the form

pk = b0 (∂kϕ + gα (ξ) ∂kξα) , k = 0, 1, 2, 3 (3.10)

where b0 6= 0 is a constant, gα (ξ) , α = 1, 2, 3 are arbitrary functions of ξ = {ξ1, ξ2, ξ3},
and ϕ is the dynamic variable ξ0, which stops to be fictitious. Let us substitute (3.10)
in (3.6). The term of the form ∂J/∂ξ0,k∂kϕ is reduced to Jacobian and does not
contribute to dynamic equation. The terms of the form ξα,k∂J/∂ξ0,k vanish due to
identities (3.9). We obtain

A [ϕ, ξ, κ, j] =

∫ {
−mcK

√
gikjijk − jkπk

}
d4x, (3.11)

where quantities πk are determined by the relations

πk = b0 (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (3.12)

Integration of (3.7) in the form (3.10) is that integration which admits to in-
troduce a wave function. Note that coefficients in the system of equations (3.7) at
derivatives of pk are constructed of minors of the Jacobian (3.1). It is the circum-
stance that admits to produce a formal general integration.

Variation of (3.11) with respect to κl gives

δA
δκl

= −λ2mc
√

gikjijk

K
κl + ∂l

λ2mc
√

gikjijk

2K
= 0, λ =

~
mc

(3.13)

It can be written in the form

κl = ∂lκ =
1

2
∂l ln ρ, e2κ =

ρ

ρ0

≡
√

jsjs

ρ0K
, (3.14)

where ρ0 =const is the integration constant. Substituting (3.4) in (3.14), we obtain
dynamic equation for κ

~2
(
∂lκ · ∂lκ + ∂l∂

lκ
)

= m2c2 e−4κjsj
s

ρ2
0

−m2c2 (3.15)

Variation of (3.11) with respect to jk gives

πk = − mcKjk√
glsjljs

(3.16)

or
πkg

klπl = m2c2K2 (3.17)
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Substituting
√

jsjs/K from the second equation (3.14) in (3.16), we obtain

jk = − ρ0

mc
e2κπk, (3.18)

Now we eliminate the variables jk from the action (3.11), using relation (3.18)
and (3.14). We obtain

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2K2 + πkπk

}
d4x, (3.19)

where πk is determined by the relation (3.12). Using expression (2.2) for K, the first
term of the action (3.19) can be transformed as follows.

−m2c2e2κK2 = −m2c2e2κ
(
1 + λ2

(
∂lκ∂lκ + ∂l∂

lκ
))

= −m2c2e2κ + ~2e2κ∂lκ∂lκ− ~
2

2
∂l∂

le2κ

Let us take into account that the last term has the form of divergence. It does
not contribute to dynamic equations and can be omitted. Omitting this term, we
obtain

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2 + ~2∂lκ∂lκ + πkπk

}
d4x, (3.20)

Here πk is defined by the relation (3.12), where the integration constant b0 is chosen
in the form b0 = ~

πk = ~ (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (3.21)

Instead of dynamic variables ϕ, ξ, κ we introduce n-component complex function

ψ = {ψα} =
{√

ρeiϕuα (ξ)
}

=
{√

ρ0e
κ+iϕuα (ξ)

}
, α = 1, 2, ...n (3.22)

Here uα are functions of only ξ = {ξ1, ξ2, ξ3}, having the following properties

α=n∑
α=1

u∗αuα = 1, − i

2

α=n∑
α=1

(
u∗α

∂uα

∂ξβ

− ∂u∗α
∂ξβ

uα

)
= gβ (ξ) (3.23)

where (∗) denotes the complex conjugation. The number n of components of the
wave function ψ depends on the functions gβ (ξ). The number n is chosen in such a
way, that equations (3.23) have a solution. Then we obtain

ψ∗ψ ≡
α=n∑
α=1

ψ∗αψα = ρ = ρ0e
2κ, ∂lκ =

∂l (ψ
∗ψ)

2ψ∗ψ
(3.24)

πk = −i~ (ψ∗∂kψ − ∂kψ
∗ · ψ)

2ψ∗ψ
+

e

c
Ak, k = 0, 1, 2, 3 (3.25)
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Substituting relations (3.24), (3.25) in (3.20), we obtain the action, written in terms
of the wave function ψ

A [ψ, ψ∗] =

∫ {[
i~ (ψ∗∂kψ − ∂kψ

∗ · ψ)

2ψ∗ψ
− e

c
Ak

] [
i~

(
ψ∗∂kψ − ∂kψ∗ · ψ)

2ψ∗ψ
− e

c
Ak

]

+ ~2∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4 (ψ∗ψ)2 −m2c2

}
ψ∗ψd4x (3.26)

Let us use the identity

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ψ∗ψ
+ ∂lψ

∗∂lψ

≡ ∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4ψ∗ψ
+

gls

2
ψ∗ψ

α,β=n∑

α,β=1

Q∗
αβ,lQαβ,s (3.27)

where

Qαβ,l =
1

ψ∗ψ

∣∣∣∣
ψα ψβ

∂lψα ∂lψβ

∣∣∣∣ , Q∗
αβ,l =

1

ψ∗ψ

∣∣∣∣
ψ∗α ψ∗β

∂lψ
∗
α ∂lψ

∗
β

∣∣∣∣ (3.28)

Then we obtain

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

+
~2

2

α,β=n∑

α,β=1

glsQαβ,lQ
∗
αβ,sψ

∗ψ

}
d4x (3.29)

Let us consider the case of irrotational flow, when gα (ξ) = 0 and the function
ψ has only one component. It follows from (3.28), that Qαβ,l = 0. Then we obtain
instead of (3.29)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

}
d4x (3.30)

Variation of the action (3.30) with respect to ψ∗ generates the Klein-Gordon equation
(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ = 0 (3.31)

Thus, description in terms of the Klein-Gordon equation is a special case of the
stochastic particles description by means of the action (2.1), (2.2).

In the case, when the fluid flow is rotational, and the wave function ψ is two-
component, the identity (3.27) takes the form

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ρ
− (∂lρ)

(
∂lρ

)

4ρ

≡ −∂lψ
∗∂lψ +

1

4
(∂lsα)

(
∂lsα

)
ρ (3.32)
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where 3-vector s = {s1, s2, s3, } is defined by the relation

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (3.33)

ψ =
(

ψ1
ψ2

)
, ψ∗ = (ψ∗1, ψ

∗
2) , (3.34)

and Pauli matrices σ = {σ1, σ2, σ3} have the form

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.35)

Note that 3-vectors s and σ are vectors in the space Vξ of the Clebsch potentials
ξ = {ξ1, ξ2, ξ3}. They transform as vectors at the transformations (2.7)

In general, transformations of Clebsch potentials ξ and those of coordinates x
are independent. However, the action (3.26) does not contain any reference to the
Clebsch potentials ξ and transformations (2.7) of ξ. If we consider only linear
transformations of space coordinates x

xα → x̃α = bα + ωα
.βxβ, α = 1, 2, 3 (3.36)

nothing prevents from accompanying any transformation (3.36) with the similar
transformation

ξα → ξ̃α = bα + ωα
.βξβ, α = 1, 2, 3 (3.37)

of Clebsch potentials ξ. The formulas for linear transformation of vectors and spinors
in Vx do not contain the coordinates x explicitly, and one can consider vectors and
spinors in Vξ as vectors and spinors in Vx, provided we consider linear transforma-
tions (3.36), (3.37) always together.

Using identity (3.32), we obtain from (3.26)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ρ− ~

2

4
(∂lsα)

(
∂lsα

)
ρ

}
d4x

(3.38)
Dynamic equation, generated by the action (3.38), has the form

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −

(
m2c2 +

~2

4
(∂lsα)

(
∂lsα

))
ψ

= −~2∂l

(
ρ∂lsα

)

2ρ
(σα − sα) ψ (3.39)

The gradient of the unit 3-vector s = {s1, s2, s3} describes rotational component
of the fluid flow. If s = const, the dynamic equation (3.39) turns to the conventional
Klein-Gordon equation (3.31). Curl of the vector field πk, determined by the relation
(3.25), is expressed only via derivatives of the unit 3-vector s.

To show this, let us represent the wave function (3.22) in the form

ψ =
√

ρeiϕ (nσ) χ, ψ∗ =
√

ρe−iϕχ∗ (σn) , n2 = 1, χ∗χ = 1 (3.40)

12



where n = {n1, n2, n3} is some unit 3-vector, χ = (
χ1
χ2

), χ∗ = (χ∗1, χ
∗
2) are constant

two-component quantities, and σ = {σ1, σ2, σ3} are Pauli matrices (3.35). The unit
vector s and the unit vector n are connected by means of the relations

s = 2n (nz)− z, n =
s + z√

2 (1 + (sz))
(3.41)

where z is a constant unit vector defined by the relation

z = χ∗σχ, z2 = χ∗χ = 1 (3.42)

All 3-vectors n, s, z are vectors in Vξ. Let us substitute the relation (3.40) into
expression ∂lπk − ∂kπl for the curl of the vector field πk defined by the relation
(3.25). Then gradually reducing powers of σ by means of the identity

σασβ ≡ δαβ + iεαβγσγ, α, β = 1, 2, 3 (3.43)

where εαβγ is the Levi-Chivita pseudotensor (ε123 = 1), we obtain after calculations

πk = − i~ (ψ∗∂kψ − ∂kψ
∗ · ψ)

2ψ∗ψ
+

e

c
Ak

= ~ (∂kϕ + εαβγnα∂knβzγ) +
e

c
Ak k = 0, 1, 2, 3 (3.44)

∂kπl − ∂lπk = −4~ [∂kn× ∂ln] z +
e

c
(∂kAl − ∂lAk) , k, l = 0, 1, 2, 3 (3.45)

The relation (3.45) may be expressed also via the 3-vector s, provided we use the
formulae (3.41).

Note that the two-component form of the wave function can describe irrotational

flow. For instance, if ψ =
(

ψ1
ψ1

)
, s1 = 1, s2 = s3 = 0, the dynamic equation (3.39)

reduces to the form (3.31), and curl of πk, defined by (3.45) reduces to

∂kπl − ∂lπk =
e

c
(∂kAl − ∂lAk) , k, l = 0, 1, 2, 3 (3.46)

4 κ-field is responsible for pair production

The nonrelativistic field u in the action (1.1) is an internal field of the nonrelativistic
particle. It can act only on the motion of the nonrelativistic particle, making it
stochastic. According to the action (2.1), (2.2) the κ-field looks also as an internal
field of the particle. It seems that it may act only on the motion of the particle,
and it cannot act on motion of other particles. However, it is not so. The κ-field ( a
relativistic version of nonrelativistic field u) can produce pairs. In other words, the
κ-field can turn the particle world line in the time direction. Formally, in such an
action κ-field acts as an internal field of the particle. But such a turn of the world

13



line is possible only, if the κ-field is a given external field. Let us illustrate this in
the example [10], when

K =

√
1 + λ2 (κlκl + ∂lκl) =

√
1 + f (x) (4.1)

where f (x) is some given function of coordinates x. The action (2.1), (2.2) takes
the form

A [q] =

∫
L (q, q̇) dτ , L = −

√
m2c2 (1 + f (q)) gikq̇iq̇k − e

c
Akq̇

k (4.2)

where relations xi = qi (τ) , i = 0, 1, 2, 3 describe the world line of the particle, and
q̇k ≡ dqi/dτ . The quantities Ak = Ak (q) , k = 0, 1, 2, 3 are given electromagnetic
potentials, and f = f (q) is some given field, replacing the particle mass m by
the effective particle mass meff = m

√
(1 + f (q)). The canonical momentum pk is

defined by the relation

pk =
∂L

∂q̇k
= −mcKgkiq̇

i

√
glsq̇lq̇s

− e

c
Ak, K =

√
(1 + f (q)) (4.3)

Dynamic equations have the form

dpk

dτ
= −mc

√
gikq̇iq̇k

∂K

∂qk
− e

c

∂Ai

∂qk
q̇i (4.4)

One can see from (4.3), that the vector

q̇k =

√
glsq̇lq̇s

1 + f (q)

(
pk + e

c
Ak

)

mc
(4.5)

becomes to be spacelike
(
glsq̇

lq̇s < 0
)
, if f (q) < −1, because only in this case the

expression under radical in (4.5) is real.
The Hamilton-Jacobi equation for the action (4.2) has the form

gik

(
∂S

∂qi
+

e

c
Ai

)(
∂S

∂qk
+

e

c
Ak

)
= m2c2 (1 + f (q)) (4.6)

Let us consider solution of the Hamilton-Jacobi equation in the space-time, where
Ai = 0, and f = f (t) is a function of only time t. In this case the full integral
S (t,x,p) of equation (4.6) has the form

S (t,x,p) = px +

t∫

0

c
√

m2c2 (1 + f (t)) + p2dt + C, p, C = const (4.7)

where p = {p1, p2, p3} are parameters. The equation of the world line is defined by
the equation

∂S (t,x,p)

∂pα

= xα − xα
0 , xα

0 = const, α = 1, 2, 3 (4.8)
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Substituting (4.7) in (4.8) and setting p2 = p3 = 0, one obtains

x1 − x1
0 +

t∫

0

p1cdt√
m2c2 (1 + f (t)) + p2

1

= 0, x1
0 = const (4.9)

xα = xα
0 = const, α = 2, 3 (4.10)

Let for example

f (t) =





0 if t < 0

− V 2

m2c4t20
t (t− t0) if 0 < t < t0

0 if t0 < t

, t0, V = const (4.11)

The world line (4.9) takes the form

x1 =





x1
0 − p1c2

E
t if t < 0

x1
0 −

t∫
0

p1cdt√
E2−V 2t(t−t0)/t20

if 0 < t < t0

x1
1 + αp1c2

E
(t− t0) if t0 < t

, E = c
√

m2c2 + p2
1 (4.12)

where α = ±1. Sign of α and the constant x1
1 are determined from the continu-

ity condition of the world line at t = t0. The solution (4.12) has different form,
depending on the sign of the constant 4E2 − V 2.

If 4E2 > V 2, the world line (4.12) takes the form

x1 =





x1
0 − p1c2

E
t if t < 0

x1
0 − p1c2t0

V
arcsin

2V
(√

E2t20−V 2t(t−t0)−E(t0−2t)
)

t0(4E2+V 2)
if 0 < t < t0

x1
0 − p1c

2 t0
V

arcsin 4EV
4E2+V 2 − p1c2

E
(t− t0) if t0 < t

, E2 > V 2/4

(4.13)
In the case, when 4E2 < V 2, the world line is reflected from the region Ωfb of

the space-time determined by the condition 0 < t < t0 in (4.11). In this case the
coordinate x is not a single-valued function of the time t. We use a parametric
representation for the world line (4.12). We have

x1 =





x1
0 − p1c2t0

2E
(1− A cosh τ) if τ < −τ 0

x1
0 − p1c2t0

V
(τ + τ 0) if −τ 0 < τ < τ 0

x1
0 − 2p1t0

V
τ 0 + p1c2t0

2E
(1− A cosh τ) if τ 0 < τ

(4.14)

t =
t0
2

(1− A cosh τ) (4.15)

where

A =

√
1− 4E2

V 2
, τ 0 = arccosh

1

A
= arccosh

1√
1− 4E2

V 2

(4.16)
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The solution (4.14), (4.15) describes annihilation of particle and antiparticle
with the energy E < V/2 in the region 0 < t < t0. The world line, describing the
particle-antiparticle generation, has the form

x1 =





x1
0 − p1c2t0

2E
(A cosh τ − 1) if τ < −τ 0

x1
0 + p1c2t0

V
(τ + τ 0) if −τ 0 < τ < τ 0

x1
0 + 2p1t0

V
τ 0 + p1c2t0

2E
(A cosh τ − 1) if τ 0 < τ

(4.17)

t =
t0
2

(A cosh τ − 1) (4.18)

where parameters A, τ 0 are defined by the relation (4.16), and the relation 2E < V
takes place.

In both cases (4.14) and (4.17) at |t| → ∞ the world line has two branches,
which can be approximated by the relations

x1 = x1
0 + vt1 ± v (t− t1) , t1 = t0

E

V
(4.19)

where v = −p1c2

E
is the particle velocity, and v = p1c2

E
is the antiparticle velocity.

The particle world line cannot turn its direction in time by means of its inner
resources. It is possible only in some external field. Energy of the particle and of
the antiparticle is absorbed by the external field f (t). Thus, if it appears that the
κ-field is not only internal field. In may be a force field which is responsible for
pair production and pair annhilation, because both processes are connected with
the turn of a world line in time.

5 Many stochastic relativistic particles

Let us consider N identical stochastic relativistic particles, having electrical charge
e and mass m. They interact via the electromagnetic field and via the force field κ.
The action has the form

AE[Sst] [X,κ,A] =
A=N∑
A=1

∫

Vξ

L(A)

(
x(A) (τ , ξ)

)
dτdξ +

∫

Vx

Lemd4x (5.1)

X =
{
x(1), x(1), ...x(N)

}
, x(A) =

{
x0

(A), x
1
(A), x

2
(A), x

3
(A)

}
, A = 1, 2, ...N (5.2)

Here an index in brackets means the number of a particle.

L(A)

(
x(A) (τ , ξ)

)
= −mcK(A)

(
x(A)

) √
gikẋi

(A)ẋ
k
(A) −

e

c
Ak (xA) ẋk

(A), A = 1, 2, ...N

(5.3)

ẋi
(A) =

dxi
(A)

dτ
, x(A) = x(A) (τ , ξ) (5.4)
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K(A) =

√√√√1 + λ2

(
gklκk (xA) κl (xA) +

∂

∂xk
(A)

κk (xA)

)
, λ =

~
mc

, A = 1, 2, ...N

(5.5)

Lem =
1

8π
gik∂iAl (x) ∂kA

l (x) , x =
{
x0, x1, x2, x3

}
(5.6)

Variation with respect to xi
(A) gives

mc
d

dτ


K(A)

(
x(A)

) ẋ(A)i√
ẋ(A)sẋ

s
(A)


−mc

∂

(
K(A)

(
x(A)

) √
ẋ(A)sẋ

s
(A)

)

∂xi
(A)

+
e

c

d

dτ
Ai (xA)− e

c
ẋk

(A)

∂

∂xi
(A)

Ak (xA) = 0, A = 1, 2, ...N (5.7)

Variation of (5.1) with respect to κi
(
x(A)

)
gives

−mc
λ2gkiκ

k
(
x(A)

)
J

(
x(A)

) √
ẋ(A)sẋ

s
(A)

K(A)

(
x(A)

) +mc
∂

∂xi
(A)

λ2J
(
x(A)

) √
ẋ(A)sẋ

s
(A)

2K(A)

(
x(A)

) = 0 (5.8)

A = 1, 2, ...N

J (x) =
∂ (τ , ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
(5.9)

Jacobian J
(
x(A)

)
appears in (5.8), because one needs before variation of (5.1) to go

from integration over dτdξ to integration over d4x in (5.1).
Equations (5.8) can be written in the form

κ(A)i

(
x(A)

)
=

∂

∂xi
(A)

κ
(
x(A)

)
=

1

2

∂

∂xi
(A)

log
J

(
x(A)

) √
ẋ(A)sẋs

(A)

K(A)

(
x(A)

) , A = 1, 2, ...N

(5.10)
where κ

(
x(A)

)
is the potential of the κ-field κi.

Equations (5.10) can be integrated in the form

κ
(
x(A)

)
=

1

2
log

J
(
x(A)

) √
ẋ(A)sẋ

s
(A)

K(A)

(
x(A)

) +
1

2
log C(A), A = 1, 2, ...N (5.11)

where C(A) = C(A) (X), A = 1, 2, ...N are functions of X =
{
x(1), x(2), ..x(N)

}
. The

functions C(A) satisfy the conditions

∂C(A) (X)

∂xk
(A)

= 0, A = 1, 2, ...N, k = 0, 1, 2, 3 (5.12)
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Let us note that the flux jk
(A) of Ath particle in the statistical ensemble can be

presented in the form

jk
(A)

(
x(A)

)
= ẋk

(A) (τ , ξ) J
(
x(A)

)
(5.13)

and equation (5.11) can be rewritten in the form

κ
(
x(A)

)
=

1

2
log

√
j(A)s

(
x(A)

)
js
(A)

(
x(A)

)

K(A)

(
x(A)

) +
1

2
log C(A), A = 1, 2, ...N (5.14)

Let choose log C(A) in the form

log C(A) =
B=N∑
B=1

(1− δAB) log

√
j(B)s

(
x(B)

)
js
(B)

(
x(B)

)

K(B)

(
x(B)

) (5.15)

According to (5.15) the κ-field at the point x(A) has the form

κ
(
x(A)

)
= κ

(
x(A), X(A)

)
=

1

2

B=N∑
B=1

log

√
j(B)s

(
x(B)

)
js
(B)

(
x(B)

)

K(B)

(
x(B)

) , A = 1, 2, ...N

(5.16)
The second argument X(A) of κ

X(A) =
{
x(1), x(2), ..x(A−1), x(A+1), ...x(N)

}
(5.17)

shows that the κ-field at the point x(A) depends on all N particles of the statistical
ensemble. Using expression (5.5) for K(A), one can rewrite the relation (5.16) in the
form of dynamic equations for κ (xA), A = 1, 2, ...N .

(
1 + λ2gkl ∂2

∂xk
(A)∂xl

(A)

)
w (xA)

=
j(A)s

(
x(A)

)
js
(A)

(
x(A)

)

w3
(
x(A)

)
B=N∏

B=1,B 6=A

j(B)s

(
x(B)

)
js
(B)

(
x(B)

)
w

(
x(B)

)

K(B)

, (5.18)

A = 1, 2, ...N

where
w

(
x(A)

)
= eκ(x(A)), A = 1, 2, ...N (5.19)

Expression (5.16) is symmetric with respect to transposition of any two particles
of N considered identical particles.

Although the action (5.1) is a sum of actions for single particles, and the particles
look as noninteracting particles, but actually the particles interact via the κ-field.
The particles interact also via electromagnetic field. The electromagnetic interaction
of particles arise because of the last term in (5.1), which contains time derivatives
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of Ak and describes the electromagnetic field as a dynamic system. Such a term,
containing time derivatives of the κ-field, is present in any L(A). We have seen in
the fourth section that external κ-field is responsible for pair production. In this
section we have seen that any relativistic particle can generate the κ-field which is
external with respect to other identical particles. Any single particle generates the
κ-field, which acts on the particle motion. However, at the particle description in
terms of the wave function the κ-field is incorporated in the definition of the wave
function by formulas (3.24). And the κ-field is considered as an attribute of the wave
function describing a free quantum particle (statistical ensemble of free stochastic
particles).

6 κ-field of a single particle

Let us consider an uniform statistical ensemble, whose state is described by the
constant flux ji of particles

j0 = const, jα = 0, α = 1, 2, 3 (6.1)

For one particle (N = 1) the equation (5.14) takes the form

exp (2κ) =

√
jsjs

√
1 + λ2e−κgkl ∂2

∂xk∂xl eκ

(6.2)

Or

1 + λ2e−κgkl ∂2

∂xk∂xl
eκ =

jsj
s

exp (4κ)
(6.3)

Introducing designation
w = eκ (6.4)

one obtains dynamic equation for w

w + λ2 ∂2w

c2∂t2
− λ2∆w =

jsj
s

w3
(6.5)

We consider the simplest case, when the flux jk is taken in the form

jα = 0, α = 1, 2, 3, j0 =

{
ρ, if r < r0

0, if r > r0
, ρ = const > 0, r0 ≤ λ (6.6)

We search for stationary spherically symmetric solution, which is an analog of the
Coulomb solution for electromagnetic field. Neglecting the term with the timelike
derivatives, we shall solve the equation (6.5) taken in the form

w − λ2 1

r2

∂

∂r

(
r2∂w

∂r

)
=

f

w3
, f = jsj

s (6.7)
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It is easy to verify that at r < r0, where f = f0 =const, the solution has the
form w = f

1/4
0 . In the region r > r0, where f = 0 the solution has the form

w = f
1/4
0 e−r/λ/r. Thus, the Coulomblike solution has the form

w =

{
f

1/4
0 , if r < r0

f
1/4
0

e−r/λ

r
, if r > r0

(6.8)

κ = log w = − r

λ
+

1

4
log

f0

r4
, r > r0 (6.9)

Of course, there is also a solution of linear equation

w + λ2 ∂2w

c2∂t2
−∆w = 0 (6.10)

which takes place in the region, where jk = 0.
Thus, we have investigated the case, when the external κ-field produces pairs,

and the case, when the κ-field is generated by a statistical ensemble of stochastic
(quantum) relativistic particles. Unfortunately, a self-consistent conception of pair
production can be hardly formulated in terms of the described formalism, because
this formalism does not distinguish between particles and antiparticles. In the fourth
section the particle and antiparticle are distinguished by their orientation ε = ±1.
But the orientation is a discrete quantity, and there is no dynamic equation for ε.
We hope that one will succeed to modify the statistical ensemble formalism in such
a way, that it will distinguish formally between particle and antiparticle.

7 Multivariant space-time geometry

Explanation of quantum effects by stochastic motion of elementary particles admits
one to remove quantum principles as the primary laws of nature. But simultane-
ously the stochastic motion of free particles arises the question on reasons of the
stochasticity. This stochasticity may be explained as a result of interaction with
some medium (ether, vacuum) distributed in the space-time. Another reason may
be an interaction of free elementary particles with the space-time directly. In other
words, space-time geometry may be such one that a free elementary particle moves
stochastically in this space-time geometry. World line of the stochastically mov-
ing particle wobbles. This wobbling is conditioned by a multivariance of the real
space-time geometry.

Geometrical vector (g-vector) AB is defined as a the ordered set AB = {A,B}
of two points A,B ∈ Ω. Here Ω is the set of points (events) of the space-time, where
the geometry is given. We use the term g-vector (vector), because there are linear
vectors (linvectors) u, which are defined as elements of the linear vector space Ln.
Linvectors u ∈ Ln are abstract quantities, whose properties are defined by a system
of axioms. In particular, operations of summation of linvectors and multiplication of
a linvector by a real number are defined in Ln. Under some conditions the operation
on linvectors may be applied to g-vectors.
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Linvectors and g-vectors have different properties. Any linvector exists in one
copy, whereas there are many g-vectors CD which are equivalent to the g-vector
AB. Geometric vector CD is equivalent (equal) to g-vector AB (CDeqvAB), if

(CDeqvAB) : (AB.CD) = |CD| · |AB| ∧ |CD| = |AB| (7.1)

where (CD.AB) is the scalar product of two vectors CD and AB, and |AB| =√
(AB.AB) is the length of the vector AB. The two g-vectors equivalence is defined

by the relation (7.1) in the proper Euclidean geometry, where

(AB.CD) = σ (A,D) + σ (B,C)− σ (A,C)− σ (B, D) (7.2)

|AB| =
√

2σ (A,B) (7.3)

Here σ (A, B) is the world function σ (A,B) = 1
2
ρ2 (A,B), where ρ (A,B) is the

distance between the points A and B. Definition (7.1) - (7.3) of two g-vectors equiv-
alence depends only on the world function. It does depend neither on dimension,
nor on the coordinate system. Definition (7.1) - (7.3) of two g-vectors equivalence
can be used in any geometry which is described completely by its world function and
only by its world function. Such a geometry is called the physical geometry. If the
world function is restricted by some conditions (the triangle axiom, nonnegativity of
the distance ρ), such a geometry is known as metric geometry. Metric geometry is a
special case of the physical geometry. The metric geometry as well as the distance
geometry [11] (restricted only by the condition of nonnegativity of the distance ρ)
cannot be used for description of the space-time, because in the space-time geometry
the space-time distance ρ may be imaginary.

In the proper Euclidean geometry there is only one g-vector CD at the point C
which is equivalent to the g-vector AB at the point A. It means that there exist
only one point D ∈ Ω which is solution of two equations

(AB.CD) = |CD| · |AB| , |CD| = |AB| (7.4)

at fixed points A,B,C ∈ Ω.
In a physical geometry, generally speaking, there are many g-vectors CD,CD′,

CD′′, ...which are equivalent to g-vector AB. Such a geometry is considered as a
multivariant geometry. The multivariance is a reason of the world line wobbling
of the free particle motion. The world line is described as a set C of points ...
P0, P1, ...Ps, ...divided by a constant distance ρ (Ps, Ps+1) = µ, s = ...0, 1, ...

C =
⋃
s

Ps, ρ (Ps, Ps+1) = µ = const, s = ...0, 1, ... (7.5)

If the limit at µ → 0 exists, the set C tends to continuous world line of the particle.
For free particle (PsPs+1eqvPs+1Ps+2), s = ...0, 1, ...If there is an unique solution
of two equations

(PsPs+1.Ps+1Ps+2) = |PsPs+1|·|Ps+1Ps+2| , |PsPs+1| = |Ps+1Ps+2| , s = ...0, 1, ..
(7.6)
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for Ps+2 at any given Ps, Ps+1, then the world line does not wobble. In this case
the space-time geometry is single-variant, the limit µ → 0 exists and the point
set C forms a continuous world line L. If the space-time geometry is multivariant,
there are several point Ps+2 determined by the points Ps, Ps+1. The set C does not
form a continuous world line. The set C forms a wobbling broken line, consisting of
connected segments of the straight line.

Even the space-time geometry of Minkowski is multivariant with respect to space-
like g-vectors. For instance, spacelike g-vectors Ps+1Ps+2 =

{√
r2 + z2, r cos φ, r sin φ, z

}

and Ps+1P
′
s+2 =

{√
r2
1 + z2, r1 cos φ1, r1 sin φ1, z

}
are equivalent to the spacelike

g-vector PsPs+1 = {0, 0, 0, z} at arbitrary values of quantities r, r1, φ, φ1. But g-
vectors Ps+1Ps+2 and Ps+1P

′
s+2 are not equivalent between themselves, generally

speaking. Amplitude of this difference is infinite in the sense that the value of∣∣Ps+2P
′
s+2

∣∣
∣∣Ps+2P

′
s+2

∣∣2 =
√

(r2 + z2) (r2
1 + z2)− rr1 cos (φ− φ1)− z2 (7.7)

has neither minimum, no supremum. The particle with spacelike world line is called
tachyon. Absence of supremum of (7.7) means that the world line of a tachyon
wobbles with infinite amplitude, and tachyon cannot be detected, even if it exists.
As far as a free tachyon cannot be detected, the contemporary scientists prefer to
think that tachyons do not exist. They prefer not to consider the wobbling spacelike
world lines. However, although a single tachyon cannot be detected, the tachyon gas
can be detected by its gravitational field. Existence of so-called dark matter may
be freely explained by a presence of the tachyon gas in cosmos [12, 13].

Tardions (i.e. particles with timelike world line) have a smooth world line in the
space-time geometry of Minkowski GM, because GM is single-variant with respect to
any timelike g- vectors. However, if the space-time geometry G differs from GM, the
space-time geometry G may be multivariant with respect to timelike g-vectors. In
this case the world line of a free tardion wobbles. In particular, if the space-time
geometry Gd is discrete, and world function σd of this geometry Gd has the form

σd = σM +
λ2

0

2
sgn (σM) (7.8)

where λ0 is the elementary length, and σM is the world function of the geometry
of Minkowski, the world lines of tardions wobble also. The discrete space-time
geometry Gd is given on the same manifold ΩM, where the geometry of Minkowski
GM is given. But any distance ρd in the geometry Gd has the property

|ρd (P, Q)| /∈ (0, λ0) , ∀P, Q ∈ ΩM (7.9)

which means that any distance |ρd (P, Q)| is not less, than elementary length λ0. It
is easy to verify that the distance ρd =

√
2σd of geometry (7.8) satisfies the condi-

tion (7.9). It follows from (7.9) that λ0 is minimal distance in Gd (but ρd (P,Q) = 0
is possible). The discrete geometry Gd is multivariant with respect to all g-vectors.
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But wobbling of timelike world lines is restricted by the elementary length λ0. This
wobbling is responsible for quantum effects. If λ2

0 = ~/ (bc), then statistical descrip-
tion of wobbling world lines is equivalent to description in terms of the Schrödinger
equation [14]. Here ~ and c are respectively the quantum constant and the speed
of the light. The quantity b is an universal constant which connects the geometric
mass µ, defined in (7.5) with the particle mass m by means of the relation

m = bµ (7.10)

The real space-time geometry may distinguish from (7.8), but in any case the
space-time geometry is multivariant, and the multivariance of the space-time geom-
etry is a reason of quantum effects.

8 Fluidity of boundary between the particle

dynamics and space-time geometry

The particle motion occurs in the space-time, and properties of the space-time are
essential for description of the particle motion. The boundary between the properties
of the space-time and properties of laws of motion (dynamics) is indefinite. One may
choose simple properties of the space-time geometry and obtain complicated laws
of dynamics. On the contrary, one may choose a simple dynamics (free particle
motion) and obtain a complicated space-time geometry. It is possible intermediate
version, when dynamics and space-time geometry are not very simple. Historically
the boundary between physics and space-time geometry moved towards space-time
geometry. This process may be qualified as the physics geometrization. One can see
several steps of the physics geometrization: (1) conservation laws as a corollaries
of the space-time geometry symmetry, (2) spacial relativity, (3) general relativity,
(4) five-dimensional geometry of Kaluza-Klein, where motion of a charged particle
in the given electromagnetic and gravitational fields is described as a free particle
motion in the Kaluza-Klein space-time geometry [15].

In the classical physics, where gravitational field and electromagnetic field are
the only possible force fields, the Kaluza-Klein representation realizes the complete
physics geometrization. But this geometrization is not complete one in microcosm,
where the quantum effects are essential. Besides, the Riemannian geometry which
is used in the Kaluza-Klein description is rather complicated. The Riemannian
geometry is founded on several basic concepts: (1) concepts of topology, (2) concepts
of local geometry such as dimension, coordinate system, metric tensor and parallel
transport. Work with concepts of the Riemannian geometry is not simpler, than
the work with numerous concepts of dynamics. As a result one prefers to work with
customary concepts of dynamics.

At the metric approach to geometry, when the space-time geometry is described
in terms of only distance ρ or in terms of only world function σ = ρ2/2, any modi-
fication of the space-time geometry looks very simple. To obtain a modification of
a geometry, one replaces world function and obtains a modified geometry described
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by the new world function. If the geometry is described by means of several fun-
damental concepts, any modification of the geometry needs a modification of all
fundamental concepts. This modification of different fundamental concepts is to be
concerted, in order the modified geometry be consistent. The more number of the
basic concepts the difficult agreement between the modified concepts. The monistic
conception of a geometry, when there is only one fundamental quantity is the best
conception, because the problem of agreement of different basic modified concepts
is absent. From this viewpoint the metric approach to the space-time geometry is
the best approach.

9 Metric approach to geometry and multivariance

of geometry

The proper Euclidean geometry can be presented in terms and only in terms of
its world function. However, attempt of generalization of the proper Euclidean ge-
ometry [11] failed in the sense, that Blumental was forced to introduce concept of
continuous mapping in addition to concept of distance. The condition of the con-
tinuous mapping cannot be expressed in terms of only distance. But the continuous
mapping was necessary to construct one-dimensional continuous curve in the dis-
tance geometry of Blumental. As a result Blumental failed to realize a consistent
metric approach to geometry, when the geometry is discribed in terms and only in
terms of a distance.

What was a reason of failure? During two thousand years we knew only proper
Euclidean geometry GE. All statements of GE are derived logically from several basic
statements (axioms). In all presentations of GE one considers the ways of derivation
(theorems) of different statements of GE from axioms of GE . The impression arises
that these theorems form the content of GE, whereas these theorems form only
the way of the proper Euclidean geometry construction. The proper Euclidean
geometry itself is a set PE of statements of GE. At the modification G of the proper
Euclidean geometry GE the set P of statements of the geometry G is obtained from
the set PE of statements of GE. Such a derivation of P from PE may differ from the
way of the proper Euclidean geometry construction. It is possible such a situation
that the modified (generalized) geometry G cannot be derived from a system of
axioms. In other words, the geometry G may be nonaxiomatizable. Unfortunately,
the nonaxiomatizablity of a geometry is perceived as something impossible, and this
perception is a result of identification of geometry GE with the way of derivation of
GE.

In general, at the metric approach to geometry the modified (generalized) ge-
ometry G is obtained from GE by means of a deformation, when the world function
σE is replaced by the world function σ of the modified geometry G in all definitions
and all general geometric statements containing only σE. Such a construction of
a physical geometry will be referred to as the deformation principle [16, 17]. The
nonaxiomatizability of a physical geometry is connected with its multivariance. In-
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deed, in order the logical Euclidean method of the geometry construction could
work, the equivalence relation (7.1) is to be transitive, when from (ABeqvCD) and
(ABeqvFH) follows that (CDeqvFH). If the equivalence relation (7.1) is intransi-
tive, from (ABeqvCD)∧ (ABeqvFH) does not follows that (CDeqvFH), a logical
construction is impossible. But impossibility of derivation of multivariant physical
geometry G by means of the Euclidean logical method does not mean that the set
P of statements of a multivariant geometry G cannot be constructed. It can be
constructed by means of the deformation principle.

Note that the Riemannian space-time geometry is multivariant with respect to re-
mote vectors. But in the Riemannian geometry one removes fernparallelism (equiv-
alency of remote vectors). Instead in the Riemannian geometry one introduces the
parallel transport of a vector. In the Riemannian geometry the finite distance, de-
fined as an integral along a geodesic, appears to be many-valued in many cases.
Many-valued distance seems to be inadmissible from physical viewpoint.

Summation of linvectors and multiplication of a linvector by a real number are
operation which are defined in the linear vector space Ln. These operations are
not adequate in application to g-vectors of multivariant geometry, although the are
adequate in application to g-vectors of GE, because the proper Euclidean geometry
GE is single-variant.

Let SAB be a set of g-vectors CD, which are equivalent to g-vector AB. If the
equivalence relation is transitive, the set SAB is a equivalence class [AB] of the g-
vector AB. It contains only g-vectors which are equivalent between themselves. In
this case any equivalence class [AB] may be corresponded by some linvector u ∈ Ln,
and this correspondence will be one-to-one, because any equivalence class exist only
in one copy. If the equivalence relation is intransitive and the set SAB does not form
an equivalence class, the correspondence between the linvectors and g-vectors cannot
be established. As a result operation of the linear vector space Ln are not adequate
in the multivariant geometry, where the equivalence relation is intransitive.

Formally one may introduce summation of g-vectors in multivariant geometry,
but this summation will be many-valued. Let one needs to sum g-vectors AB and
CD, and B 6= C. Let g-vector PQ = AB + CD, where the point P is given, and
the point Q should be determined. One obtains

PQ = PF + FQ (9.1)

where points F and Q are determined from the relations

(PFeqvAB) ∧ (FQeqvCD) (9.2)

In the multivariant geometry the equations (9.2) has many solutions for the points
F and Q, and the operation of summation appears to be many-valued. In the single-
variant geometry the relations (9.2) have unique solution for points F and Q and
the summation (9.1) is defined one-to-one.

Multiplication of a g-vector by a real number is also many-valued in the mul-
tivariant geometry, because definition of multiplication contains a reference to a
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relation of equivalence, which is many-valued in the multivariant geometry. Let
PQ′ = aPQ, where the points P, Q and the number a are given, then the point Q′

is to be determined from the relations

(PQ′.PQ) = |PQ′| · |PQ| , |PQ′| = a |PQ| (9.3)

Solution of the two equations is many-valued in the multivariant geometry, gen-
erally speaking. Thus, methods of differential geometry, developed for the proper
Euclidean geometry GE are inadequate in the multivariant geometry. However, in-
adequacy of the differential geometry methods in the multivariant geometry does not
mean that multivariant geometries do not exist.

The physics geometrization in the classical physics, when the space-time geom-
etry is a Riemannian geometry, is not effective, because for determination of the
Kaluza-Klein geometry one needs to determine the metric tensor gik and electro-
magnetic potential Ak, k = 0, 1, 2, 3. However, if these quantities are known, one
may write dynamic equations for the particle motion in the space-time geometry
of Minkowski and determine the particle world line. A use of the Kaluza-Klein
geometry appears to be needless.

In the physics geometrization inside microcosm the force fields acting on a par-
ticle are not known. They are different for different elementary particles. One
supposes, that in the proper (true) space-time geometry the elementary particle
motion is free. Writing dynamic equations for the free particle motion in the true
space-time geometry, one may rewrite the dynamic equations in the case of the
space-geometry of Minkowski. In this case the dynamic equations cease to be free
dynamic equations. Dynamic equations will contain force fields, arising as a result of
deflection of the Minkowski geometry GM from the true space-time geometry, where
the particle motion is free. The microcosm dynamic equations in the space-time
geometry of Minkowski are not known primarily. They arise as a result of trans-
formation of free dynamic equations, written in a true space-time geometry. In the
microcosm the fluidity of boundary between the particle dynamics and the space-
time geometry admits one to reduce determination of the particle dynamics laws to
the determination of the world function of the true space-time geometry, where the
elementary particles move free.

The number of variants of the dynamics laws for indefinite number of different
sorts of elementary particles is more, than the number of variants of the world
functions σ (P, Q) of two space-time points P,Q. As a result a use of the hypothesis
on the boundary fluidity for any elementary particles seems to be more effective, than
suppositions on dynamics of any single elementary particle, which are extracted from
complicated experiments with elementary particles. Of course, the hypothesis on
the boundary fluidity for any elementary particles should be tested by experiment.
However, in the case of classical physics this hypothesis is true distinctly. Besides,
primarily it is not clear what is responsible for peculiar properties of particle motion:
the space-time geometry or the laws of the particle dynamics.

Usage of the hypothesis on the boundary fluidity between the dynamics and the
space-time geometry generates a conception of the elementary particle dynamics.
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In other words, a connection between the concepts of dynamics and those of the
space-time geometry arise. This connection is a logical connection. It arises on the
logical basis, but not on basis of a single experiment or on the basis of several single
experiments. It concerns all elementary particles. This conception may appear to
be valid or wrong, but it is a conception.

A like conception is absent in the contemporary elementary particle theory, where
one invents suppositions on dynamics and interaction of different sorts of elementary
particles, which are labelled by some quantum numbers. Absence of a conception in
the contemporary theory generates numerous variants of a theory. These variants
contain numerous interaction constants, which are to be determined from experi-
ment. To understand, why it is bad, let us imagine that we have not a conception
of classical particle dynamics, which states that any particle is a dynamic system,
and its motion is described by a Lagrange function. In absence of such a concep-
tion one needs to invent dynamic equations for any particle, depending on its mass,
color, temperature, shape and so on. In absence of the dynamics conception one
cannot distinguish between essential parameters (mass) and unessential ones (color,
temperature). As a result any investigation of dynamics becomes to be complicated.

10 Description of geometrical objects in

multivariant geometry

A geometrical object is a geometrical image of a physical body. Any geometrical
object is some subset of points in the space-time. However, a geometrical object is
not an arbitrary set of points. In the physical geometry a geometrical object is to be
defined in such a way, that similar geometrical objects (which are images of similar
physical bodies) could be recognized in different space-time geometries.

Definition 1: A geometrical object gPn,σ of the geometry G = {σ, Ω} is a subset
gPn,σ ⊂ Ω of the point set Ω. This geometrical object gPn,σ is a set of roots R ∈ Ω
of the function FPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , FPn,σ : Ω → R (10.1)

where FPn,σ depends on the point R via world functions of arguments {Pn, R} =
{P0, P1, ...Pn, R}

FPn,σ : FPn,σ (R) = GPn,σ (u1, u2, ...us) , s =
1

2
(n + 1) (n + 2) (10.2)

ul = σ (wi, wk) , i, k = 0, 1, ...n + 1, l = 1, 2, ...
1

2
(n + 1) (n + 2)(10.3)

wk = Pk ∈ Ω, k = 0, 1, ...n, wn+1 = R ∈ Ω (10.4)

Here Pn = {P0, P1, ..., Pn} ⊂ Ω are n + 1 points which are parameters, determining
the geometrical object gPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , R ∈ Ω, Pn ∈ Ωn+1 (10.5)
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FPn,σ (R) = GPn,σ (u1, u2, ...us) is an arbitrary function of 1
2
(n + 1) (n + 2) argu-

ments uk and of n + 1 parameters Pn. The set Pn = {P0, P1, ...Pn} ∈ Ωn+1 of the
geometric object parameters will be referred to as the skeleton of the geometrical
object. The subset gPn,σ ⊂ Ω will be referred to as the envelope of the skeleton.
The skeleton is an analog of a frame of reference, attached rigidly to a physical
body. Tracing the skeleton motion, one can trace the motion of the physical body.
When a particle is considered as a geometrical object, its motion in the space-time
is described by the motion of skeleton Pn . At such an approach (the rigid body
approximation) the shape of the envelope is of no importance.

Remark: An arbitrary subset Ω′ of the point set Ω is not a geometrical object,
generally speaking. It is supposed, that physical bodies may have only a shape of
a geometrical object, because only in this case one can identify identical physical
bodies (geometrical objects) in different space-time geometries.

Existence of the same geometrical objects in different space-time regions, having
different geometries, brings up the question on equivalence of geometrical objects in
different space-time geometries. Such a question did not arise before, because one
does not consider such a situation, when a physical body moves from one space-
time region to another space-time region, having another space-time geometry. In
general, mathematical technique of the conventional space-time geometry (differen-
tial geometry) is not applicable for simultaneous consideration of several different
geometries of different space-time regions.

We can perceive the space-time geometry only via motion of physical bodies in
the space-time, or via construction of geometrical objects corresponding to these
physical bodies. As it follows from the definition 1 of the geometrical object, the
function GPn,σ as a function of its arguments uk, k = 1, 2, ...n (n + 1) /2 (of world
functions of different points) is the same in all physical geometries. It means, that
a geometrical object O1 in the geometry G1 = {σ1, Ω1} is obtained from the same
geometrical object O2 in the geometry G2 = {σ2, Ω2} by means of the replacement
σ2 → σ1 in the definition of this geometrical object.

Definition 2: Geometrical object gP ′n,σ′ ( P ′n = {P ′
0, P

′
1, ..P

′
n}) in the geometry

G ′ = {σ′, Ω′} and the geometrical object gPn,σ ( Pn = {P0, P1, ..Pn}) in the geometry
G = {σ, Ω} are similar geometrical objects, if

σ′ (P ′
i , P

′
k) = σ (Pi, Pk) , i, k = 0, 1, ..n (10.6)

and the functions G′
P′n,σ′ for gP ′n,σ′ and GPn,σ for gPn,σ in the formula (10.2) are the

same functions of arguments u1, u2, ...us

G′
P′n,σ′ (u1, u2, ...us) = GPn,σ (u1, u2, ...us) (10.7)

In this case

ul ≡ σ (Pi, Pk) = u′l ≡ σ′ (P ′
i , P

′
k) , i, k = 0, 1, ...n, l = 1, 2, ..n (n + 1) /2

(10.8)
The functions F ′

P ′n,σ′ for gP ′n,σ′ and FPn,σ for gPn,σ in the formula (10.2) have the same
roots, if the relation (10.7) is fulfilled. As a result one-to-one connection between
the geometrical objects gP ′n,σ′ and gPn,σ arises.
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As far as the physical geometry is determined by its geometrical objects construc-
tion, a physical geometry G = {σ, Ω} can be obtained from some known standard
physical geometry Gst = {σst, Ω} by means of a deformation of the standard geom-
etry Gst. Deformation of the standard geometry Gst is realized by the replacement
of σst by σ in all definitions of the geometrical objects in the standard geome-
try. The proper Euclidean geometry GE is an axiomatizable geometry. It has been
constructed by means of the Euclidean method as a logical construction. Using
Euclidean method, one obtains GE in the vector representation [19]. Simultaneously
the proper Euclidean geometry is a physical geometry. In this case one obtains GE in
terms of the world function σE, i.e. in the σ-representation [19]. It may be used as
a standard geometry Gst. Construction of a physical geometry as a deformation of
the proper Euclidean geometry GE will be referred to as the deformation principle
[17]. The most physical geometries are nonaxiomatizable geometries. They can be
constructed only by means of the deformation principle.

11 General geometric relations

Describing a physical geometry in terms of the world function, one should distinguish
between general geometric relations and specific geometric relations. The general
geometric relations are the relations, which are written only in terms of the world
function. The general geometric relations are valid for any physical geometry.

The first general geometric definition is the definition of the scalar product of
two vectors (7.2). Definition of the two vector equivalence (7.1) - (7.3) is also a
general geometric relation.

Linear dependence of n g-vectors P0P1,P0P2, ...P0Pn is defined by the relation,

Fn (Pn) = 0, Fn (Pn) ≡ det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (11.1)

where Pn = {P0, P1, ...Pn} and Fn (Pn) is the Gram’s determinant. Vanishing of the
Gram’s determinant is the necessary and sufficient condition of the linear dependence
of n g-vectors. Condition of linear dependence relates usually to the properties of
the linear vector space. It seems rather meaningless to use it, if the linear vector
space cannot be introduced. Nevertheless, the relation (11.1) written as a general
geometric relation describes some general geometric properties of g-vectors, which
in the proper Euclidean geometry transform to the property of linear dependence.
In particular, the dimension of the proper Euclidean geometry is defined in terms
of the world function by means of the relations of the type (11.1) as a maximal
number of linear independent vectors, which is possible in the Euclidean space. This
circumstance seems to be rather unexpected, because in conventional presentation
(vector representation [19]) of the Euclidean geometry GE the geometry dimension
is postulated in the beginning of the geometry construction.

The general geometric relations describe general geometric properties of g-vectors,
which are used at construction of geometrical objects. General geometric relations
are essentially definitions of the scalar product, equivalence of g-vectors and their
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linear dependence. As we have seen, a definition of geometrical objects in the form
of general geometric relations (i.e. in terms of the world function) is necessary to
recognize the same physical body (and corresponding geometrical object) in different
space-time geometries.

The general geometric relations are parametrized by the form of the world func-
tion. Changing the form of the world function, one obtains the general geometric
relations at a new value of the parameter σ (new form of the world function).

12 Specific properties of the n-dimensional

Euclidean space

Along of general geometric properties, connecting mainly with the properties of
the linear vector space, there are special geometric relations, describing properties
of the world function. For instance, there are relations, which are necessary and
sufficient conditions of the fact, that the world function σE is the world function of
n-dimensional Euclidean space. They have the form [18]:

I. Definition of the dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (12.1)

where Fn (Pn) is the n-th order Gram’s determinant (11.1). Geometric vectors
P0Pi, i = 1, 2, ...n are basic g-vectors of the rectilinear coordinate system Kn with
the origin at the point P0. The metric tensors gik (Pn), gik (Pn), i, k = 1, 2, ...n in
Kn are defined by the relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (12.2)

Fn (Pn) = det ||gik (Pn)|| 6= 0, i, k = 1, 2, ...n (12.3)

II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(12.4)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the g-vectors P0P, P0Q respectively in the coordinate system Kn.
The covariant coordinates are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (12.5)

III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (12.6)
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IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (12.7)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space, which is defined
by the relations (12.1).

All relations I – IV are written in terms of the world function. They are con-
straints on the form of the world function of the proper Euclidean geometry GE.
Constraints (12.1), determining the dimension via the form of the world function,
look rather unexpected. They contain a lot of constraints imposed on the world
function of the proper Euclidean geometry GE, and they are necessary. At the
conventional approach to geometry one uses a very simple supposition: ”Let the
dimension of the Euclidean space be n.” instead of numerous constraints (12.1).

At the vector representation of the proper Euclidean geometry, which is based on
a use of the linear vector space, the dimension is considered as a primordial property
of the linear vector space and as a primordial property of the Euclidean geometry
GE. Situation, when the geometry dimension is different at different points of the
space Ω, or when it is indefinite, is not considered. At the vector representation of
the Euclidean geometry GE one does not distinguish between the general geometric
relations and the specific relations of the geometry.

Instead of constraints (12.1) – (12.7) one may use an explicit form of the world
function

σE (x, x′) =
1

2

k=n∑

k=1

(
xk − x′k

)2
(12.8)

where xk, x′k ∈ R, k = 1, 2, ...n are Cartesian coordinates of points P and P ′ respec-
tively. The relation (12.8) satisfies all constraints (12.1) – (12.7). It uses concepts of
dimension and of coordinates as primordial concepts of geometry. Using the world
function only in such an explicit form, one cannot imagine a generalized geome-
try without such concepts as a dimension and a coordinate system, although these
concepts are only means of a geometry GE description.

In general, after the logical reloading to σ-representation, when such base con-
cepts of GE as dimension and coordinate system are replaced by the only base con-
cept (world function), the proper Euclidean geometry GE looks rather unexpected.
Some concepts look very simple in the vector representation. The same concepts
look complicated in the σ-representation and vice versa. As a result the proper
Euclidean geometry in the σ-representation is perceived hardly. In the vector rep-
resentation one has several fundamental quantities: dimension, coordinate system,
linear dependence, whereas in the σ-representation there is only one fundamental
quantity: world function. The dimension, the coordinate system and the linear de-
pendence are derivative quantities. Agreement between these quantities is achieved
in any physical geometry automatically, because they are defined as some attributes
of a world function. But this agreement looks very strange for researchers, who
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learned the Euclidean geometry in its conventional presentation and believe that
any properties of GE take place in any generalized geometry.

In reality GE is a degenerate geometry, where the equality relation is transitive
and the property of multivariance is absent in GE. According to its properties GE can
be constructed as a logical construction. Most researchers believe that any space-
time geometry can be derived as a logical construction. They can imagine no other
method of the geometry construction. They cannot imagine that the equivalence
relation may be intransitive. They assume that the equivalence relation is transitive
by definition. (How can one construct a geometry, if the equivalence relation is
intransitive!?). In reality such a viewpoint is a corollary of the fact that researchers
have been working only with GE which is a degenerate single-variant geometry.
In GE some natural geometric properties (intransitivity of the equivalence relation
and multivariance) are absent. How can one accept a geometry, where customary
operations: (1) summation of g-vectors, (2) multiplication of a g-vector by a number
and (3) decomposition of a g-vector are inadequate?

If P0Pi , i = 1, 2, ...n are basic g-vectors in some coordinate system Kn, one can
determine projections of g-vector P0P on the basic g-vectors

Pr (P0P)P0Pi
=

(P0P.P0Pi)

|P0Pi| (12.9)

However, the g-vector P0P cannot be represented as a sum of its projections, because
the summation of g-vectors is inadequate operation in the multivariant geometry.
Thus, coordinates may be used for labelling of space-time points, but they cannot
be used for realization of the differential geometry operations.

13 Equivalence of physical geometries

Generalization of general geometric expressions (7.1) – (7.3) on the case of the
discrete geometry Gd is obtained by means of the replacement of σE by σd, where
σd is the world function (7.8) of the discrete geometry Gd. We are to be ready, that
properties of concepts of dimension, linear dependence of g-vectors and segment of
the straight line in Gd differ strongly from their properties in GE. However, we have
no alternative to these relations for definition of these geometrical quantities in a
discrete geometry Gd.

Definition 4 : The physical geometry G = {σ, Ω} is a point set Ω with the single-
valued function σ on it

σ : Ω× Ω → R, σ (P, P ) = 0, σ (P,Q) = σ (Q,P ) , ∀P, Q ∈ Ω
(13.1)

Definition 5: Two physical geometries G1 = {σ1, Ω1} and G2 = {σ2, Ω2} are
equivalent (G1eqvG2), if the point set Ω1 ⊆ Ω2∧σ1 (P, Q) = σ2 (P, Q) , ∀P,Q ∈ Ω1,
or Ω2 ⊆ Ω1 ∧ σ2 (P, Q) = σ1 (P,Q) , ∀P, Q ∈ Ω2

Remark: Coincidence of point sets Ω1 and Ω2 is not necessary for equivalence
of geometries G1 and G2. If one demands coincidence of Ω1 and Ω2 in the case of
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equivalence of G1 and G2, then an elimination of one point P from the point set Ω1

turns the geometry G1 = {σ1, Ω1} into geometry G2 = {σ1, Ω1\P}, which appears
to be not equivalent to the geometry G1. Such a situation seems to be inadmissible,
because a geometry on a part ω ⊂ Ω1 of the point set Ω1 appears to be not equivalent
to the geometry on the whole point set Ω1.

According to definition the geometries G1= {σ, ω1} and G2= {σ, ω2} on parts
ω1 ⊂ Ω and ω2 ⊂ Ω of Ω are equivalent (G1eqvG) , (G2eqvG) to the geometry
G = {σ, Ω}, whereas the geometries G1= {σ, ω1} and G2= {σ, ω2} are not equivalent,
generally speaking, if ω1 " ω2 and ω2 " ω1. Thus, the relation of the geometries
equivalence is intransitive, in general. The space-time geometry may vary in different
regions of the space-time. It means, that a physical body, described as a geometrical
object, may evolve in such a way, that it appears in regions with different space-time
geometry.

The space-time geometry of Minkowski as well as the Euclidean geometry are
continuous geometries. It is true for usual scales of distances. However, one cannot
be sure, that the space-time geometry is continuous in microcosm. The space-time
geometry may appear to be discrete in microcosm. We consider a discrete space-time
geometry and discuss the corollaries of the suggested discreteness.

14 Discreteness and its manifestations

The simplest discrete space-time geometry Gd is described by the world function
(7.8). Density of points in Gd with respect to point density in GM is described by
the relation

dσM

dσd

=

{
0 if |σd| < 1

2
λ2

0

1 if |σd| > 1
2
λ2

0

(14.1)

If the world function has the form

σg = σM +
λ2

0

2

{
sgn (σM) if |σM| > σ0

σM

σ0
if |σM| ≤ σ0

(14.2)

where σ0 = const, σ0 ≥ 0, the relative density of points has the form

dσM

dσg

=

{ 2σ0

2σ0+λ2
0

if |σg| < σ0 + 1
2
λ2

0

1 if |σg| > σ0 + 1
2
λ2

0

(14.3)

If the parameter σ0 → 0, the world function σg → σd and the point density (14.3)
tends to the point density (14.1). The space-time geometry Gg, described by the
world function (14.2) is a geometry, which is a partly discrete geometry, because it
is intermediate between the discrete geometry Gd and the continuous geometry GM.
We shall refer to the geometry Gg as a granular geometry.

Deflection of the discrete space-time geometry from the continuous geometry
of Minkowski generates special properties of the geometry, which are corollaries of
impossibility of the linear vector space introduction.
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Let P0P1 be a timelike g-vector in Gd (σd(P0, P1) > 0). We try to determine a
g-vector P1P2 at the point P1, which is equivalent to g-vector P0P1. Geometrical
vectors P0P1 and P1P2 may be considered as two adjacent links of a broken world
line, describing a pointlike particle.

Let for simplicity coordinates have the form

P0 = {0, 0, 0, 0} , P1 = {µ, 0, 0, 0} , P2 =
{
x0,x

}
=

{
x0, x1, x2, x3

}
(14.4)

In this coordinate system the world function of geometry Minkowski has the form

σM (x, x′) =
1

2

((
x0 − x0′)2 − (x− x′)2

)
(14.5)

and σd is determined by the relation (7.8). We are to determine coordinates x of
the point P1 from two equations (7.1), which can be written in the form

σd (P0, P1) = σd (P1, P2) , σd (P0, P2) = 4σd (P0, P1) (14.6)

After substitution of world function (7.8) one obtains

1

2

((
x0 − µ

)2 − x2 + λ2
0

)
=

1

2

(
µ2 + λ2

0

)
(14.7)

1

2

((
x0

)2 − x2 + λ2
0

)
= 2

((
x0 − µ

)2 − x2 + λ2
0

)
(14.8)

Solution of these equations has the form

x0 = 2µ +
3

2

λ2
0

µ
, x2 = 3λ2

0

(
1 +

3λ2
0

4µ2

)
(14.9)

As a result the point P2 has coordinates

P2 =

{
2µ +

3

2

λ2
0

µ
, r sin θ cos ϕ, r sin θ sin ϕ, r cos θ

}
, r = λ0

√
3 +

9

4

λ2
0

µ2
(14.10)

where θ and ϕ are arbitrary quantities. Thus, spatial coordinates of the point P2

are determined to within
√

3λ0. In the limit λ0 → 0 the point P2 is determined
uniquely. Two solutions

P ′
2 =

{
2µ +

3

2

λ2
0

µ
, 0, 0, r

}
, P ′′

2 =

{
2µ +

3

2

λ2
0

µ
, 0, 0,−r

}

are divided by spatial distance i |P′
2P

′′
2| =

√
4r2 + λ2

0 ≈
√

13λ0 (λ0 ¿ µ). It is a
maximal distance between two solutions P′

2 and P′′
2.

If λ0 = 0, then the discrete geometry turns to the geometry of Minkowski, and
P2 = {2µ, 0, 0, 0}. The relations

x0 = 2µ, x1 = 0, x2 = 0, x3 = 0 (14.11)
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follow from one equation x2 = 0. It means, that the geometry of Minkowski is a
degenerate geometry, because different solutions of the discrete geometry merge into
one solution of the geometry of Minkowski.

Let us consider the same problem for spacelike g-vectors P0P1, P1P2, when

P0 = {0, 0, 0, 0} , P1 = {0, l, 0, 0} , P2 = {ct, x, y, z} (14.12)

We have the same equations (14.6), but now we have another solution

x = 2l +
3λ2

0

2l
, y = a2, z = a3, c2t2 = r2 = 3λ2

0 +
9

4

λ4
0

l2
(14.13)

where a2 and a3 are arbitrary numbers. The point P2 has coordinates

P2 =

{√
a2

2 + a2
3 + r2, 2l +

3λ2
0

2l
, a2, a3

}
, r2 = 3λ2

0

(
1 +

3λ2
0

4l2

)
(14.14)

The difference between two solutions P ′
2 and P ′′

2

P ′
2 =

{√
a2

2 + a2
3 + r2, 2l +

3λ2
0

2l
, a2, a3

}
, P ′′

2 =

{√
b2
2 + b2

3 + r2, 2l +
3λ2

0

2l
, b2, b3

}

may be infinitely large

|P′
2P

′′
2| =

√
2a2b2 + 2a3b3 − 2

√
r2 + a2

2 + a2
3

√
r2 + b2

2 + b2
3 + 2r2 − λ2

0

This difference remains very large, even if λ0 → 0.
Thus, both the discrete geometry and the geometry of Minkowski are multivari-

ant with respect to spacelike g-vectors. However, this circumstance remains to be
unnoticed in the conventional relativistic particle dynamics, because the spacelike
g-vectors do not used there.

Multivariance of the discrete geometry leads to intransitivity of the equivalence
relation of two vectors. Indeed, if (Q0Q1eqvP0P1) and (Q0Q1eqvP0P

′
1), but g-

vector (P0P1eqvP0P
′
1). It means intransitivity of the equivalence relation. Besides,

it means that the discrete geometry is nonaxiomatizable, because in any logical
construction the equivalence relation is transitive.

Transitivity of the equivalence relation in the case of the proper Euclidean ge-
ometry is a corollary of the special conditions (12.1) – (12.7). In the case of the
arbitrary physical geometry they are not satisfied, in general.

Parallel transport of a g-vector P0P1 to some point Q0 leads to some indetermi-
nacy of the result of this transport, because at the point Q0 there are many g-vectors
Q0Q1, Q0Q

′
1,..., which are equivalent to the g-vector P0P1.

According to (9.1) - (9.3) results of g-vectors summation and of a multiplication
of a g-vector by a real number are not unique, in general, in the discrete geometry.
It means, that one cannot introduce a linear vector space in the discrete geometry.
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Let the discrete geometry be described by n coordinates. Let the skeleton
Pn = {P0, P1, ...Pn} determine n g-vectors P0Pk, k = 1, 2, ...n, which are linear
independent in the sense

Fn (Pn) = det ‖(P0Pi.P0Pk)‖ 6= 0 i, k = 1, 2, ...n (14.15)

One can determine uniquely projections of a g-vector Q0Q1 onto g-vectors P0Pk,
k = 1, 2, ...n by means of relations (12.9). However, one cannot reestablish the
g-vector Q0Q1, using its projections onto g-vectors P0Pk, k = 1, 2, ...n, because a
summation of the g-vector components is many-valued. Thus, all operations of the
linear vector space are not unique in the discrete geometry.

Mathematical technique of differential geometry is not adequate for application
in a discrete geometry, because it is too special and it is adapted for a continuous
(differential) geometry. This circumstance is especially important in a description
of the elementary particle dynamics. The state of a particle cannot be described by
its position and its momentum, because the limit µ → 0 in (14.4) does not exist in
a discrete geometry. Besides, dynamic equations cannot be differential equations.

15 Skeleton conception of particle dynamics

An elementary particle is a physical body. In the discrete space-time geometry
a position of a physical body is described by its skeleton Pn = {P0, P1, ..Pn}. Of
course, such a description of a physical body position may be used in any space-time
geometry. The skeleton is an analog of the frame of reference attached rigidly to the
particle (physical body). Tracing the skeleton motion, one traces the physical body
motion. Direction of the skeleton displacement is described by the leading vector
P0P1.

The skeleton motion is described by a world chain C of connected skeletons

C =
s=+∞⋃
s=−∞

P(s)
n (15.1)

Skeletons P(s)
n of the world chain are connected in the sense, that the point P1 of a

skeleton is a point P0 of the adjacent skeleton. It means

P
(s)
1 = P

(s+1)
0 , s = ...0, 1, ... (15.2)

The geometric vector P
(s)
0 P

(s)
1 = P

(s)
0 P

(s+1)
0 is the leading g-vector, which determines

the direction of the world chain.
If the particle motion is free, the adjacent skeletons are equivalent

P(s)
n eqvP(s+1)

n : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k , i, k = 0, 1, ...n, s = ..0, 1, ..

(15.3)
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If the particle is described by the skeleton P(s)
n , the world chain (15.1) has n(n+1)/2

invariants

µik =
∣∣∣P(s)

i P
(s)
k

∣∣∣
2

= 2σ
(
P

(s)
i , P s

k

)
, i, k = 0, 1, ...n, s = ...0, 1, ... (15.4)

which are constant along the whole world chain.
Equations (15.3) form a system of n (n + 1) difference equations for determina-

tion of nD coordinates of n skeleton points {P1, P2, ..Pn}, where D is the coordinate
dimension of the space-time. The number of dynamical variables, liable for deter-
mination distinguishes, generally speaking, from the number of dynamic equations.
It is the main difference between the skeleton conception of particle dynamics and
the conventional conception of particle dynamics, where the number of dynamic
variables coincides with the number of dynamic equations.

In the case of pointlike particle, when n = 1, D = 4, the number of equations
ne = 2, whereas the number of variables nv = 4. The number of equations is less,
than the number of dynamic variables. In the discrete space-time geometry (7.8) the
position of the adjacent skeleton is not uniquely determined. As a result the world
chain wobbles. In the nonrelativistic approximation a statistical description of the
stochastic world chains leads to the Schrödinger equations [14], if the elementary
length λ0 has the form

λ2
0 =

~
bc

(15.5)

where ~ is the quantum constant, c is the speed of the light and b is a universal
constant, connecting the particle mass m with the length µ of the world chain link
by the relation (7.10).

Dynamic equations (15.3) are difference equations. At the large scale, when one
may go to the limit λ0 = 0, the dynamic equations (15.3) turn to the differential
dynamic equations. In the case of pointlike particle (n = 1) and of the Kaluza-
Klein five-dimensional space-time geometry these equations describe the motion of
a charged particle in the given electromagnetic field. One can see in this example,
that the space-time geometry ”assimilates” the electromagnetic field. It means that
one may consider only a free particle motion, keeping in mind, that the space-time
geometry can ”assimilate” all force fields.

Dynamic equations (15.3) realize the skeleton conception of particle dynamics
in the microcosm. The skeleton conception of dynamics distinguishes from the
conventional conception of particle dynamics in the relation, that the number of
dynamic equations may differ from the number of dynamic variables, which are to
be determined. In the conventional conception of particle dynamics the number of
dynamic equations (of the first order) coincides always with the number of dynamic
variables, which are to be determined. As a result the motion of a particle (or of
an averaged particle) appears to be deterministic. In the case of quantum particles,
whose motion is stochastic (indeterministic), the dynamic equations are written for
a statistical ensemble of indeterministic particles (or for the statistically averaged
particle).
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In the conventional conception of the particle dynamics one can obtain dynamic
equation for the statistically averaged particle (i.e. statistical ensemble normalized
to one particle), but there are no dynamic equations for a single stochastic particle.
In the skeleton conception of the particle dynamics there are dynamic equations for a
single particle. These equations are many-valued (multivariant), but they do exist.
In the conventional conception of the particle dynamics one can derive dynamic
equations for the statistically averaged particle, which are a kind of equations for a
fluid (continuous medium). But one cannot obtain dynamic equations for a single
indeterministic particle [7].

The skeleton conception of the particle dynamics realizes a more detailed de-
scription of elementary particle. One may hope to obtain some information on the
elementary particle structure.

We have now only two examples of the skeleton conception application. Consid-
ering compactification in the 5-dimensional discrete space-time geometry of Kaluza-
Klein, and imposing condition of uniqueness of the world function, one obtains that
the value of the electric charge of a stable elementary particle is restricted by the ele-
mentary charge [20]. This result has been known from experiments, but it could not
be explained theoretically, because in the continuous space-time geometry nobody
considers the world function as a fundamental quantity, and one does not demand
its uniqueness.

Another example concerns structure of Dirac particles (fermions). Writing the
Dirac equation as dynamic equation for an ensemble of a stochastic particle [21, 22,
23] one obtains that the mean world line of this particle is a helix with timelike axis.
Spin and magnetic moment of the Dirac particle are conditioned by the particle
rotation in its motion along the helical world line. Thus, statistical description
provides some information on the Dirac particle structure, whereas the quantum
approach cannot give such information, although in both cases one investigates the
same dynamic equation.

Consideration in the framework of skeleton conception [24] shows, that a world
chain of a fermion is a (spacelike or timelike) helix with timelike axis. The averaged
world chain of a free fermion is a timelike straight line. The helical motion of a
skeleton generates an angular moment (spin) and magnetic moment. Such a result
looks rather reasonable. In the conventional conception of the particle dynamics
the spin and magnetic moment of a fermion are postulated without a reference
to its structure. Helical world chain of the Dirac particle is connected with the
fact that the skeleton of the Dirac particle contains three, or more points and it is
described by three (or more) invariants µik = µki, i, k = 1, 2, 3 which are defined
by the relation (15.4). In the case of the two-point skeleton describing the pointlike
particle there is only one parameter µ which describes the particle mass. At the
quantum approach the parameter µ is absent and the particle mass is considered as
some external (not geometric) parameter of a particle. In the skeleton conception
all particle parameteres are geometric quantities. In the case of the Dirac particle
its mass and spin are expressed via geometical invariants µik. (this connection is
not yet obtained).
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16 Concluding remarks

Structural approach to the elementary particle theory appears as a result of a skele-
ton conception, where the particle state is described by means of the particle skele-
ton. Such a description of the particle state is relativistic. Besides, this description
is coordinateless, and it can be produced in any space-time geometry (continuous
or discrete). Relativistic concept of the particle state admits one to replace the
quantum description by statistical description of stochastic world lines of elemen-
tary particles. As a result the quantum principles and quantum essences appeared
to be unnecessary. Such a replacement of the quantum description by the statisti-
cal description appears to be possible because of a logical reloading in the particle
dynamics, when a single particle as the basic object of dynamics is replaced by a sta-
tistical ensemble of particles, and dynamics of stochastic and deterministic particles
is described in the same terms.

Further development of the skeleton conception arises after the logical reloading
in space-time geometry, when such basic geometric concepts as dimension, coordi-
nate system, infinitesimal distance are replaced by the unique basic concept: finite
distance or world function. As a result a monistic conception of the space-time geom-
etry appears. Capacities of this conception increases essentially because of monistic
character of the description. In particular, one succeeds to overcome the degenerate
character of GE and to construct multivariant space-time geometry. Multivariance
of the space-time geometry explains freely the elementary particles stochasticity
(quantum effects).

Thus, the supposition on the space-time geometry discreteness seems to be more
natural and reasonable, than the supposition on quantum nature of physical phe-
nomena in microcosm. Discreteness is simply a property of the space-time, whereas
quantum principles assume introduction of new essences.

Formalism of the discrete geometry is very simple. It does not contain theo-
rems with complicated proofs. Nevertheless the discrete geometry and its formalism
is perceived hardly. The discrete geometry was not developed in the twentieth
century, although the discrete space-time was necessary for description of physical
phenomena in microcosm. It was rather probably, that the space-time is discrete in
microcosm. What is a reason of the discrete geometry disregard? We try to answer
this important question.

The discrete geometry was not developed, because it could be obtained only as
a generalization of the proper Euclidean geometry. Almost all concepts and quan-
tities of the proper Euclidean geometry use essentially concepts of the continuous
geometry. They could not be used for construction of a discrete geometry. Only
world function (or distance) does not use a reference to the geometry continuity.
Only coordinateless expressions (7.1) –(7.4) of the Euclidean geometry presented
in terms of world function admit one to construct a discrete geometry and other
physical geometries.

Assurance, that any geometry is to be axiomatizable, was the second obstacle on
the way of the discrete geometry construction. The fact, that the proper Euclidean
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geometry is a degenerate geometry, was the third obstacle. In particular, being a
physical geometry, the proper Euclidean geometry is an axiomatizable geometry,
and this circumstance is an evidence of its degeneracy. It is very difficult to obtain
a general conception as a generalization of a degenerate conception, because some
different quantities of the general conception coincide in the degenerate conception.
It is rather difficult to disjoint them. For instance, a physical geometry is multivari-
ant, generally speaking. Single-variant physical geometry is a degenerate geometry.
In the physical geometry the straight segment T[P0P1]

T[P0P1] =
{

R|
√

2σ (P0, R) +
√

2σ (R,P1) =
√

2σ (P0, P1)
}

(16.1)

is a surface (tube), generally speaking. In the degenerate physical geometry (the
proper Euclidean geometry GE) the straight segment is a one-dimensional set. How
can one guess, that a straight segment is a surface, generally speaking? Besides,
multivariance of the equivalence relation leads to nonaxiomatizability of geometry.
But we learn only axiomatizable geometries in the last two thousand years. How can
we guess, that nonaxiomatizable geometries exist? The multivariance is a natural
property of a geometry. Non-acceptance of this concept is the main reason of the
discrete physical geometry disregard. The straight way from the Euclidean geometry
to physical geometries was very difficult, and the physical geometry has been derived
on an oblique way.

J.L.Synge [25, 26] has introduced the world function for description of the Rie-
mannian geometry. I was a student. I did not know the papers of Synge, and I in-
troduced the world function for description of the Riemannian space-time in general
relativity. My approach differed slightly from the approach of Synge. In particular,
I had obtained an equation for the world function of Riemannian geometry [27],
which contains only the world function and their derivatives,

∂σ (x, x′)
∂xi

Gik′ (x, x′)
∂σ (x, x′)

∂x′k
= 2σ (x, x′) , Gik′ (x, x′) Glk′ (x, x′) = δi

l, (16.2)

where

Glk′ (x, x′) ≡ ∂2σ (x, x′)
∂xl∂x′k

, l, k = 0, 1, 2, 3 (16.3)

The metric tensor is expressed via world function G by the relation

gik (x) = −Glk′ (x, x) = − [Glk′ (x, x′)]x′=x (16.4)

but it is used at the determination of the world function G (x, x′) only as a initial
(or boundary) condition. Equation (16.2) was obtained as a corollary of the world
function definition as an integral along the geodesic, connecting points x and x′.
This equation contains only world function and its derivatives, but it does not
contain a metric tensor.

This equation arose the question. Let a world function G do not satisfy the
equation (16.2). Does this world function describe a non-Riemannian geometry or
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it does describe no geometry at all? It was very difficult to answer this question. On
one hand, the formalism, based on the world function, is a more developed formalism,
than formalism based on a usage of metric tensor, because a geodesic between points
P0, P1 is described in terms of the world function by algebraic equation (16.1),
whereas the same geodesic is described by differential equations in terms the metric
tensor.

On the other hand, the geodesic described by (16.1) is one-dimensional only in
the Riemannian geometry. In n-dimensional space the equation (16.1) describes a
(n− 1)-dimensional surface. I did not know, whether the surface is a generalization
of a geodesic in any geometry. I was not sure, if it is possible, because in the
Euclidean geometry a straight line segment is one-dimensional by definition. I left
this question unsolved and returned to it almost thirty years later, in the beginning
of ninetieth.

When the string theory of elementary particles appeared, it became clear for
me, that the particle may be described by means of a world surface (tube) but not
only by a world line. As far as the particle world line associates with a geodesic, I
decided, that a world tube may describe a particle. It meant that there exist space-
time geometries, where straights (geodesics) are described by world tubes. The
question on possibility of the physical space-time geometry has been solved for me
finally, when the quantum description appeared to be a corollary of the space-time
multivariance [14].
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