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Abstract

It is shown that description of a stochastic particle in the framework
of of axiomatic quantum mechanics is not complete. Description of a
stochastic particle in framework of classical gas dynamics is more com-
plete.

Statistical ensemble is a tool for statistical description of indeterministic or
partially indeterministic processes. Concept of statistical ensemble is slightly
different in various branches of physics. Usually a statistical ensemble is a
superstructure over dynamics. The dynamics can be classical or quantum. In
both cases the statistical ensemble is a superstructure over dynamics. But a
statistical ensemble is not defined as an object of dynamics. Ludwig Boltzmann
was the first researcher, who used the statistical ensemble as a dynamic system
for description of stochastic motion of gas molecules. But in this case he did
not used the term statistical ensemble.

We define statistical ensemble as a dynamic system, consisting of many iden-
tical dynamic systems S. For instance, gas, consisting of identical molecules,
is a dynamic system. The gas is a statistical ensemble of identical molecules.
If collision of gas molecules absent, the molecule motion is deterministic, and
one can derive dynamic equation for motion of a single molecule from gas dy-
namic equation. If there are collisions between molecules, the molecule motion
is stochastic (indeterministic). In this case there are no dynamic equations
for a single molecule. However, the mean motion of a single molecule can be
derived from the gas dynamic equations. In other words, gas as a dynamic sys-
tem admits one to obtain some statistical information on a motion of a single
molecule. Investigating properties of the molecular collision, which is respon-
sible for the stochastic motion of gas molecules, Boltzmann obtained a kinetic
equation, which describes evolution of the velocity distribution. In other words,
Boltzmann has obtained statistical description of stochastic motion of a single
molecule, although dynamic equations for stochastic motion of a single molecule
did not exist. In the given case, the gas plays the role of statistical ensemble
E [S], where S is a single molecule.
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The Boltzmann’s papers has been underestimated by scientific community,
which considered them as papers on fluid dynamics, whereas in reality they
were papers on statistical description of the indeterministic particle motion. It
was especially clear, when it appears, that quantum particles can be described
by means of the gas dynamics, where molecules interact via some force field κ
instead of collision.

If we consider a set of many noninteracting identical particles, the statistical
ensemble E [S] (gas) is described by the action

A [x] = −
∫

mc
√

gikẋiẋkdτdξ, ẋi ≡ ∂xi (τ , ξ)
∂τ

(1)

where x =
(
x0 (τ , ξ) , x1 (τ , ξ) , x2 (τ , ξ) , x3 (τ , ξ)

)
, ξ =(ξ1, ξ2, ξ3) is a label of a

particle (Lagrangian coordinates), τ is a parameter along the world line of the
particle, m is the particle mass and c is the speed of the light.

If the particles interact via some field κi =
(
κ0 (x) , κ1 (x) , κ2 (x) , κ3 (x)

)
,

which changes the particle mass

m → M = m

√
1 + λ2 (κiκi + ∂iκi), ∂i ≡ ∂

∂xi
(2)

The action takes the form

A [x, κ] = −
∫

mcK
√

gikẋiẋkdτdξ, (3)

K =
M

m
=

√
1 + λ2 (κiκi + ∂iκi) (4)

Dynamic equations for variables x and κ are derived from (3) by means of
variation of (3) with respect to xi and κi respectively.

Variation of (3) leads to dynamic equation

−h̄2∂k∂kψ −
(

m2c2 +
h̄2

4
(∂lsα)

(
∂lsα

))
ψ = −h̄2 ∂l

(
ρ∂lsα

)

2ρ
(σα − sα)ψ (5)

where 3-vector s = {s1, s2, s3, } is defined by the relations

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (6)

ψ =
(

ψ1
ψ2

)
, ψ∗ = (ψ∗1, ψ

∗
2) , (7)

and σ = {σ1, σ2, σ3} are 2× 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (8)

The wave function ψ has been introduced, because the wave function is a natural
attribute of fluid dynamics [1].
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In the case of nonrotational flow the wave function is one component the
dynamic equation (8) turns to the Klein-Gordon equation

−h̄2∂k∂kψ −m2c2ψ = 0 (9)

Details of equation (5) derivation can be found in [2].
Connection between the gas dynamics and quantum equations was known

long ago [3, 4]. However, this connection was one-sided. One can derive fluid
dynamic equations from the Schrödinger equation, but one was not able to derive
the Schrödinger equation from the fluid dynamics. In this relation derivation of
Klein-Gordon equation as a gas dynamic equation looks as inverse operation.

Thus, quantum dynamic equation can be derived in the framework of classi-
cal dynamics without a use of quantum principles. It is a very unexpected result,
because it is used to think, that the Klein-Gordon equations can be obtained
only by a use of quantum principles in the framework of axiomatic quantum
theory. The Klein-Gordon equation (9) is simply classical gas dynamic equa-
tion for the gas, where interaction between molecules is described by relation
(2). It means that quantum phenomena may be explained in the framework
classical dynamics, if one chooses a proper interaction field between particles.

Besides, the example of Boltzmann consideration shows, that description
of the particle stochasticity by means of gas dynamic equation is incomplete.
Investigation of the field, which is responsible for molecular interaction (colli-
sion), admits one to obtain a more complete description of the molecular motion
stochasticity in terms of kinetic equation. The Klein-Gordon equation (9) is a
kind of the classical gas dynamic equation. One can expect that investigation
of κ-field (2) admits one to obtain a more complete description of the quantum
stochasticity.

In the axiomatic quantum theory, where the quantum stochasticity is deter-
mined by the quantum principles, the Klein-Gordon equation (9) realizes maxi-
mally possible description of the particle stochasticity. Description of quantum
particles in terms of classical dynamics, where some classical force field is re-
sponsible for quantum stochasticity, generates a new direction in the elementary
particle theory. Elementary particles have some internal structure in the frame-
work of this direction. They are not pointlike objects, as it takes place in the
axiomatic quantum theory. Existence of the κ-field (2) is conditioned by discrete
space-time geometry, and quantum constant h̄ is connected with minimal length
λ0 of the discrete space-time geometry. Investigation of the κ-field generated
structural direction in the elementary particle theory [5], which admits one to
investigate internal structure of elementary particles.

It is surprising, how a change of the statistical ensemble definition generates
essential change of the elementary particle theory.
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