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Abstract

An ideal fluid whose internal energy depends on density, density gradi-
ent, and entropy is considered. Dynamic eqautions are integrated, and a
description in terms of hydrodynamic (Clebsch) potentials arises. All essen-
tial information on the fluid flow (including initial and boundary conditions)
appears to be carried by the dynamic equations for hydrodynamic potentials.
Information on initial values of the fluid flow is carried by arbitrary integra-
tion functions. Initial and boundary conditions for potentials contain only
unessential information concerning the fluid particle labeling. It is shown
that a description in terms of n-component complex wave function is a kind
of such a description in terms of hydrodinamic potentials. Spin determined
by the irreducible number nm of the wave function components appears to be
an attribute of the fluid flow. Classification of fluid flows by the spin appears
to be connected with invariant subspaces of the relabeling group.

PACS numbers: 03.40.Gc; 47.10.+g; 03.65.Bz
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I Introduction

Ideal (nondissipative) fluid with the internal energy E of a very general form is
considered. The internal energy E is supposed to depend on the fluid density ρ,
density gradient ∇ρ, and entropy per unit mass S. The stress tensor for such a fluid
has the form

Pαβ = δαβ[ρ2∂E

∂ρ
+

∂(ρE)

∂ργ

ργ]− ρ∂α
∂(ρE)

∂ρβ

, α, β = 1, 2, 3 (1)

ρα ≡ ∂αρ, ∂i ≡ ∂

∂xi
, i = 0, 1, 2, 3

If E = E(ρ, S) does not depend on ∇ρ, the stress tensor has the form

Pαβ = pδα
β

where p = ρ2∂E/∂ρ is the pressure. Conventionally the dependence of the internal
energy on the ∇ρ is not considered. There are two motives for consideration of such
an unusual fluid.

First, a proper dependence of E on∇ρ prevents sound waves from tilting. Indeed,
let the internal energy have the form

E = E0(ρ, S) + a(∇ρ/ρ)2 (2)

where a is a small positive quantity. For usual laminar flows, where ∇ρ/ρ is small,
the last term of (2) does not give a significant contribution in the stress tensor (1),
and it is of no importance whether or not there is the last term in (2). In the case
of the wave tilting the last term in (2) becomes to be principal. On the front of the
tilted sound wave E tends to ∞, and the tilting of the wave may be stopped.

Second. Fluid models with the internal energy of a very general form are used
for a description of statistical ensembles of stochastic particles. By definition a
statistical ensemble E [Sst] of stochastic particles Sst is a set of many independent
identical stochastic particles Sst. Usually the term ”statistical ensemble” associates
with some tool for calculation of average values of physical quantities. But this tool
is effective, provided the statistical ensemble is a set of deterministic (non-stochastic)
particles. In reality the principal property of the statistical ensemble is formulated
as follows. The statistical ensemble of many stochastic (or deterministic) particles is
a deterministic dynamic system. This statement sounds rather unexpected, because
for a statistical ensebmle of deterministic systems this property looks as a trivial
one. In the statistical physics the statistical ensembles of deterministic systems are
considered mainly (the only exception statistical ensemble of Brownian particles),
and the property of the statistical ensemble of being a deterministic dynamic system
needs some explanations [1, 2].

A result of an experiment with a single stochastic particle Sst is irreproducible.
But distributions of results of similar experiments with many independent stochas-
tic particles are reproducible. Projecting many independent identical stochastic
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particles Sst in the same space-time region, one obtains a cloud E [N,Sst] of N inde-
pendent identical particles Sst moving randomly. With the number N of particles
tending to ∞, this cloud E [∞,Sst] may be considered as a continuous medium, or
as a fluid. This fluid is a deterministic dynamic system, because experiments with
the fluid E [∞,Sst] are reproducible. Besides any reproducible experiments with the
stochastic particle can be described in terms of the fluid E [∞,Sst] without a ref-
erence to any probabilistic construction (i.e. without a reference to the property
of the statistical ensemble of being a tool for calculation of average values). The
probabilistic constructions are effective only, if the statistical ensemble E [∞,Sd] con-
sists of deterministic particles Sd whose properties can be determined independently
of E [∞,Sd]. In the case of E [∞,Sst] these probabilistic constructions (probability
density, or probability amplitude) are needed only for interpretation of the fluid in
terms of a single stochastic particle. (See for details [3]).

For instance, let us consider a single electron Sst, flying from an electron gun,
passing through a narrow slit in a diaphragm and hitting a screen at a point x1.
Another electron Sst, prepared in the same way, hits the screen at other point
x2 which does not coincide with x1. In other words, an experiment with single
electron is irreproducible in general. It means that a single electron is a stochastic
particle. Let us consider a series of N (N → ∞) experiments with identically
prepared independent electrons. Distribution of N impact points over the screen is
reproducible, i.e. it is approximately the same for other series of N experiments.
It means that a set E [N,Sst] of N (N → ∞) independent identical electrons Sst

is a deterministic dynamic system, although a single electron Sst is a stochastic
system. If E [∞,Sst] can be considered as a fluid, then solving dynamic equations
for this fluid and calculating flux of the fluid E [∞,Sst] through the screen, one can
calculate the diffraction picture (distribution of the impact points over the screen).
For such a calculation one needs only characteristics of the dynamic system E [∞,Sst]
(dynamic equations, expressions for the particle flux and the energy-momentum
tensor). Any quantum axiomatics and corresponding probabilistic constructions
(wave function, linear operators, commutation relations, etc.) are not needed. It
means that quantum effects can be explained and calculated as purely dynamical
effects [3].

On the other hand, quantum particles are described conventionally in terms of
wave functions. The wave function is considered as a fundamental object which
cannot be defined via other more fundamental objects. As a result, as any fun-
damental object, the wave function and its properties are defined by a system of
axioms (quantum axiomatics, or quantum principles). Some connection of the wave
function with the irrotational flow of some quantum (Madelung) fluid [4]-[10] is
known for a long time. (Connection of the wave function with the irrotational flow
was discovered comparatively recently [11]. But all the time the wave function is
considered as a fundamental object, whereas the quantum fluid is considered as a
derivative object. In this paper the fluid is considered as a fundamental object,
connected directly with the statistical description of stochastic particles, whereas
the wave function is considered as a derivative construction whose properties can be
expressed via properties of the fluid.
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In general, the wave function as a property of the fluid satisfies the quantum prin-
ciples (linearity of dynamic equations, etc.) only in some special cases. For instance
in the case, when the internal energy (2) depends only on vdif = −h̄(2m)−1∇ρ/ρ
and has the form

E = E(ρ,∇ρ) =
v2

dif

2
, vdif = − h̄∇ρ

2mρ
(3)

where m is the particle mass, and h̄ is the Planck constant. To avoid misunderstand-
ings and to differ between the wave function as a fundamental object, satisfying the
quantum axiomatics, and the wave function as a property of a fluid, we shall use
two different terms ”wave function” in the first case and ”ψ-function” in the second
one.

It is very important that the quantum phenomena are connected directly with
the fluid model, i.e. such a connection does not contain any reference to the quantum
principles. There is a hope that quantum superfluids like the liquid Helium may be
described as an ideal fluid with the internal energy depending on ∇ρ.

In the present paper some mathematical properties of conservative dynamic sys-
tems are investigated. Such a system S is a continuous set of particles, interacting
via some self-consistent potential force field V . The dynamic system S is described
by the action of the form.

AL[x] =
∫
{m

2
(
dx

dt
)
2

− V }ρ0(ξ)dtdξ (4)

where x = {xα(t, ξ)}, α = 1, 2, 3 are functions of time t and of particle labels
ξ ={ξ1, ξ2, ξ3}. ρ0(ξ) is some non-negative weight function, and m =const is some
mass of the fluid particle. V is a self-consistent potential depending on x and
derivatives of x with respect to ξ. This function is supposed to have such a form
that the potential V is a given function of variables ρ, ∇ρ, and S. Here

ρ ≡ mρ0(ξ)
∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
, (5)

and S = S0(ξ) is some fixed function of variables ξ. In this case the dynamic
system S may be considered as some ideal fluid. It will be shown that in the Euler
description, where x = {t,x} are independent variables, and ξ, ρ, v ≡dx/dt, S are
dependent variables, the action (4) generates dynamic equations of the form

∂ρ

∂t
+∇(ρv) = 0 (6)

∂vα

∂t
+ (v∇)vα = −1

ρ
∂βPαβ, α = 1, 2, 3, (7)

∂S

∂t
+ (v∇)S = 0 (8)

where x0 = t is the time, x = {x1, x2, x3} is the position vector, ρ and v = {v1, v2, v3}
are respectively the fluid mass density and the fluid velocity considered as func-
tions of x = {t,x}. Pαβ is a stress tensor, defined by (1), and E(ρ,∇ρ, S) =
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V (ρ,∇ρ, S)/m is an internal energy of an unite mass. The E depends on the den-
sity ρ, on the density gradient ∇ρ, and on the entropy S per unit mass.

In the case of an usual fluid, when the V does not depend on ∇ρ, the stress
tensor Pαβ is isotropic, and the equation (7) turns to the Euler equation for the
ideal fluid

∂v

∂t
+ (v∇)v = −1

ρ
∇p, p = ρ2∂E

∂ρ
(9)

where p is the pressure, and E = E(ρ, S) is an internal energy of an unite mass
considered as a function of ρ and S. Thus, if V depends only on variables ρ,∇ρ, S the
dynamic system S, described by the action (4) will be referred to as nondissipative
(ideal) fluid.

The system of hydrodynamic equations (6)–(8), as well as the system (6), (9), (8)
is a closed system of differential equations which has an unique solution inside some
space-time region Ω, provided dependent dynamic variables ρ and v = {v1, v2, v3},
S are given as functions of three arguments on the space-time boundary Γ of the
region Ω. Nevertheless, being closed, the system (6)–(8) is incomplete, because
it describes only momentum-energetic characteristics of the fluid. The action (4)
generates additional dynamic equations

∂ξ

∂t
+ (v∇)ξ = 0, (10)

known as Lin constraints [12]. These equations describe motion of fluid particles
along their trajectories.

If the equations (10) are solved and ξ is determined as a function of (t,x), the
finite relations

ξ(t,x) = ξin = const

describe implicitly a fluid particle trajectory and a motion along it.
The system of eight equations (6)–(8), (10) forms a complete system of dynamic

equations describing a fluid, whereas the system of five equations (6)–(8) forms
a curtailed system of dynamic equations. The last system is closed, but to be a
complete system, it must be supplemented by the kinematic equations

dx

dt
= v(t,x), x = x(t, ξ), (11)

or by the Lin constraints (10) which are equivalent to (11).
The fact that the complete system (6)–(8), (10) of dynamic equations admits a

closed subsystem (6)–(8) is connected with the invariance of the system (6) –(8),
(10) with respect to the group of relabeling transformations (relabeling group)

ξα → ξ̃α = ξ̃α(ξ), D = det ‖ ∂ξ̃α/∂ξβ ‖6= 0, α, β = 1, 2, 3 (12)

ϕ = ξ0 → ξ̃0 = ϕ̃ = ξ̃0(ξ0) + a0(ξ), ∂ξ̃0/∂ξ0 > 0 (13)

where ξ = {ξ0, ξ} are curvilinear Lagrangian coordinates in the space-time, ξ̃ =
{ξ̃0, ξ̃} is another system of curvilinear Lagrangian coordinates. ξ̃ and a0 are ar-
bitrary functions of ξ. ξ̃0 is arbitrary function of ξ0. ξ0 is a temporal Lagrangian
coordinate, and ξ are spatial ones.
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The relabeling group properties are used in hydrodynamics comparatively re-
cently [13, 14, 15, 16, 17, 18, 19, 20]. The action (4) is invariant with respect to
the relabeling group (12), (13), provided the weight function ρ0(ξ) transforms as a
scalar density

ρ0(ξ) → ρ̃0(ξ̃) = D−1ρ0(ξ), D =
∂(ξ̃)

∂(ξ)
≡ ∂(ξ̃1, ξ̃2, ξ̃3)

∂(ξ1, ξ2, ξ3)
(14)

The group of relabeling transformations appears to be a symmetry group of the
dynamic system (fluid). Any special particle labeling is unessential from physical
viewpoint. It is a reason why several equations (6) –(8) of the complete system form
a closed system describing conservation laws. This symmetry group admits also to
integrate the complete system (6) –(8), (10) in the form (see the proof below Sec.3)

S(t,x) = S0(ξ) (15)

ρ(t,x) = ρ0(ξ)
∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
≡ ρ0(ξ)

∂(ξ)

∂(x)
(16)

v(t,x) = π(ϕ, ξ, η, S) ≡ ∇ϕ + gα(ξ)∇ξα − η∇S, (17)

where S0(ξ), ρ0(ξ), g(ξ) = {gα(ξ)}, α = 1, 2, 3 are arbitrary integration functions of
argument ξ, and ϕ, η are new dependent variables, satisfying dynamic equations

∂ϕ

∂t
+ π(ϕ, ξ, η, S)∇ϕ− 1

2
[π(ϕ, ξ, η, S)]2 +

∂(ρE)

∂ρ
−∂α

∂(ρE)

∂ρα

= 0 (18)

∂η

∂t
+ π(ϕ, ξ, η, S)∇η = −∂E

∂S
. (19)

If five dependent variables ϕ, ξ, η satisfy the system of equations (10), (18), (19), the
five dynamic variables S, ρ, v (15)–(17) satisfy dynamic equations (6)–(8). Indefinite
functions S0(ξ), ρ0(ξ), g(ξ) can be determined from initial and boundary conditions
in such a way that the initial and boundary conditions for variables ϕ, ξ, η were
universal in the sense that they do not depend on the fluid flow.

The integration of the complete system (6)–(8), (10) and some corollaries of
this integration correlate with the Hamilton properties of the ideal fluid [24, 14,
27, 23, 19, 20]. It is connected with the fact that the curtailed system (6)–(8) is
not a Hamiltonian system in itself, whereas the complete system (6)–(8), (10) is a
Hamiltonian one. Constructing Hamiltonian mechanics of the ideal fluid, one uses
(implicitly or explicitly) the Lin constraints (or part of them). It is this expansion of
the curtailed system (but not Hamiltonian properties) that is important for integra-
tion and derivation of other useful results. To show this, the Hamiltonian technique
and Hamiltonian properties of the ideal fluid will not be used at all.

According to (16), (17) the physical quantities ρ, v are obtained as a result of
differentiation of the variables ϕ, ξ, S, and the variables ϕ, ξ, η can be regarded as
hydrodynamic potentials. These potentials appear in the Hamilton fluid dynamics
[23] as dependent variables. They associate with the name of Clebsch [21, 22] who
introduced these quantities for the incompressible fluid. Such quantities as gα(ξ) also
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appear in the Hamilton fluid mechanics, [23] but they appear as dependent variables
(Lagrange invariants) satisfying dynamic equations of the type (10). They also are
regarded as hydrodynamic potentials. Note that in the Hamilton fluid mechanics [23]
the quantities gα are considered simply as dependent variables, but not as indefinite
functions of ξ arising as a result of integration, although corresponding dynamic
equations for gα can be integrated easily.

Integration of the dynamic equations admits a description of any ideal fluid in
terms of hydrodynamic potentials ξ = {ξ0, ξ}. The hydrodynamic potentials ξ are
Lagrangian coordinates considered as functions of independent Eulerian coordinates
x = {t,x}. Spatial Lagrangian coordinates ξ = {ξα}, α = 1, 2, 3 label fluid particles,
whereas the temporal Lagrangian coordinate ξ0 = ξ0(t,x) means some generalized
time for the fluid particle placed at the space-time point x = {t,x}.

The description of any ideal fluid in terms of hydrodynamic potentials ξ can
transform into a description in terms of a complex n-component hydrodynamic
potential ψ = {ψα}, α = 1, 2, . . . n which associates with the wave function, used in
the quantum mechanics, whereas the irreducible (minimally possible) number nm of
the ψ-function components, associates with the spin of the flow (not of the particle).

In the presented paper it is shown that the wave function is a way of a description
of any ideal fluid. The spin is a natural property of any flow of the ideal fluid.
Appearance of these enigmatic quantities at the description of quantum particles
may be explained merely as a result of a quantum particle description in terms of
an ideal fluid (statistical ensemble). Note that the curtailed system (6)–(8) has
the same order as the integrated system (10), (18), (19), but it takes into account
neither initial conditions, nor kinematic equations (11). The fact that the ideal
fluid considered as a dynamic system admits both the curtailed system (6)–(8) and
the integrated system (10), (18), (19) is connected closely with the group of the
relabeling transformation (12).

The second section is devoted to presentation of the space-time symmetric Ja-
cobian technique which is needed for integration of hydrodynamic equations. Use
of Jacobians in hydrodynamics has had a long history, dating back to the time of
Clebsch [21, 22]. It was the use of Jacobians that allowed to introduce the Cleb-
sch potentials and integrate hydrodynamic equations. The Jacobian technique was
used in [24, 14, 25, 23, 20] and many other papers). It seems that the progress in
the integration of hydrodynamic equations is connected mainly with the developed
Jacobian technique.

Further it will be proved (Sec.3) that the complete system of hydrodynamic
equations (6)–(8), (10) can be integrated in the form (10), (15), (19) that leads to
a special form of a description in terms of hydrodynamic potentials (DTHP). In
the fourth section the initial and boundary conditions are used for determination of
function g. In the fifth section a special type of a complex hydrodynamic potentials
is considered and the fluid flows are classified on the irreducible number of the wave
function components which appears to be an invariant of the relabeling group.
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II Jacobian technique

Let us consider such a space-time symmetric mathematical object as the Jacobian

J ≡ ∂(ξ0, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
≡ det ‖ ξi,k ‖, ξi,k ≡ ∂kξi ≡ ∂ξi

∂xk
, i, k = 0, 1, 2, 3 (20)

Here ξ = {ξ0, ξ} = {ξ0, ξ1, ξ2, ξ3} are four scalars considered as functions ξ = ξ(x)
of x = {x0,x}. The functions {ξ0, ξ1, ξ2, ξ3} are supposed to be independent in the
sense that J 6= 0. It is useful to consider the Jacobian J as 4-linear function of
variables ξi,k ≡ ∂kξi, i, k = 0, 1, 2, 3. Then one can introduce derivatives of J with
respect to ξi,k. The derivative ∂J/∂ξi,k appears as a result of a substitution of ξi by
xk in the relation (20).

∂J

∂ξi,k

≡ ∂(ξ0, ...ξi−1, x
k, ξi+1, ...ξ3)

∂(x0, x1, x2, x3)
, i, k = 0, 1, 2, 3 (21)

For instance
∂J

∂ξ0,i

≡ ∂(xi, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
, i = 0, 1, 2, 3 (22)

This rule is valid for higher derivatives of J also.

∂2J

∂ξi,k∂ξs,l

≡ ∂(ξ0, ...ξi−1, x
k, ξi+1, ...ξs−1, x

l, ξs+1, ...ξ3)

∂(x0, x1, x2, x3)
≡

∂(xk, xl)

∂(ξi, ξs)

∂(ξ0, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
≡ J(

∂xk

∂ξi

∂xl

∂ξs

− ∂xk

∂ξs

∂xl

∂ξi

), i, k, l, s = 0, 1, 2, 3 (23)

It follows from (20), (21) that

∂xk

∂ξi

≡ ∂(ξ0, ...ξi−1, x
k, ξi+1, ...ξ3)

∂(ξ0, ξ1, ξ2, ξ3)
≡ ∂(ξ0, ...ξi−1, x

k, ξi+1, ...ξ3)

∂(x0, x1, x2, x3)
×

∂(x0, x1, x2, x3)

∂(ξ0, ξ1, ξ2, ξ3)
≡ 1

J

∂J

∂ξi,k

, i, k = 0, 1, 2, 3 (24)

and (23) may be written in the form

∂2J

∂ξi,k∂ξs,l

≡ 1

J
(

∂J

∂ξi,k

∂J

∂ξs,l

− ∂J

∂ξi,l

∂J

∂ξs,k

), i, k, l, s = 0, 1, 2, 3 (25)

The derivative ∂J/∂ξi,k is a cofactor to the element ξi,k of the determinant (20).
Then one has the following identities

ξl,k
∂J

∂ξs,k

≡ δs
l J, ξk,l

∂J

∂ξk,s

≡ δs
l J, l, s = 0, 1, 2, 3 (26)

∂k
∂J

∂ξi,k

≡ ∂2J

∂ξi,k∂ξs,l

∂k∂lξs ≡ 0, i = 0, 1, 2, 3. (27)
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Here and further a summation on two repeated indices is produced (0-3) for Latin
indices and (1-3) for the Greek ones. The identity (27) can be considered as a
corollary of the identity (25) and a symmetry of ∂k∂lξs with respect to permutation
of indices k, l. Convolution of (25) with ∂k, or ∂l vanishes also.

Relations (20) –(25) are written for four independent variables x, but they are
valid in an evident way for arbitrary number n + 1 of variables x = {x0, x1, . . . xn}
and ξ = {ξ0, ξ}, ξ = {ξ1, ξ2, . . . ξn}.

Application of the Jacobian J to hydrodynamics is founded on the property, that
the fluid flux

ji = m
∂J

∂ξ0,i

, j = {ji} = {ρ, ρv}, i = 0, 1, 2, 3 (28)

constructed on the basis of the variables ξ = {ξ1, ξ2, ξ3} satisfies Lin constraints (10)
and the continuity equation

∂ij
i = 0 (29)

identically for any choice of variables ξ, as it follows from the identity (27) for i = 0.
The continuity equation (29) is used without approximations in all hydrodynamic
models, and the change of variables {ρ, ρv} ↔ ξ described by (28) is very important.

In particular, in the case of two-dimensional established flow of incompressible
fluid the variables ξ reduce to one variable ξ1 = ψ, known as the stream function.
In this case there are only two essential dependent variables x0 = x, x1 = y, and
the relations (28), (29) reduce to relations

ρ−1jx = vx =
∂ψ

∂y
, ρ−1jy = vy = −∂ψ

∂x
,

∂vx

∂x
+

∂vy

∂y
= 0 (30)

Defining the stream line as a line tangent to the flux j

dx

jx

=
dy

jy

, (31)

one obtains that the stream function is constant along the stream line, because
according to two first equations (30), ψ = ψ(x, y) is an integral of the equation (31).

In the general case, when the space dimensionality is n and x = {x0, x1, . . . xn},
ξ = {ξ0, ξ}, ξ = {ξ1, ξ2, . . . ξn}, the quantities ξ = {ξα}, α = 1, 2, . . . n are constant
along the line L tangent to the flux vector j = {ji}, i = 0, 1, . . . n

L :
dxi

dτ
= ji(x), i = 0, 1, . . . n (32)

where τ is a parameter along the line L which is described parametrically by the
equation x = x(τ). This statement is formulated mathematically in the form

dξα

dτ
= ji∂iξα = m

∂J

∂ξ0,i

∂iξα = 0, α = 1, 2, . . . n

The last equality follows from the first identity (26) taken for s = 0, l = 1, 2, . . . n
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Interpretation of the line (32) tangent to the flux is different for different cases.
If x = {x0, x1, . . . xn} contains only spatial coordinates, the line (32) is a line in the
usual space. It is regarded as a stream line, and ξ can be interpreted as quantities
which are constant along the stream line (i.e. as a generalized stream function).
If x0 is the time coordinate, the equation (32) describes a line in the space-time.
This line (known as a world line of a fluid particle) determines a motion of the fluid
particle. Variables ξ = {ξ1, ξ2, . . . ξn} which are constant along the world line are
different, generally, for different particles. If ξα, α = 1, 2, . . . n are independent, they
may be used for the fluid particle labeling.

Thus, although interpretation of the relation (28) considered as a replacement of
dependent variables j by ξ may be different, from the mathematical viewpoint this
transformation means a replacement of the continuity equation by some equations
for the labeling (or generalized stream function) ξ. Difference of the interpretation
is of no importance in this context.

Note that the expressions

ji = mρ0(ξ)
∂J

∂ξ0,i

≡ mρ0(ξ)
∂(xi, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
, i = 0, 1, 2, 3, (33)

can be also considered as four-flux satisfying the continuity equation (29). Here m
is a constant and ρ0(ξ) is an arbitrary function of ξ. It follows from the identity

mρ0(ξ)
∂(xi, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
≡ m

∂(xi, ξ̃1, ξ2, ξ3)

∂(x0, x1, x2, x3)
, ξ̃1 =

ξ1∫

0

ρ0(ξ
′
1, ξ2, ξ3)dξ′1.

As an example of application of the Jacobian technique, let us show that (5)
satisfies (6) in virtue of (10). Let us multiply (10) by (5) and introduce new variables
j = ρv = {j1, j2, j3}. One obtains three equations

mρ0(ξ)
∂J

∂ξ0,0

ξβ,0 + jαξβ,α = 0, β = 1, 2, 3. (34)

Considering (34) as a system of three linear equations for jα, α = 1, 2, 3 and resolving
it with respect to jα, one obtains

jα = mρ0(ξ)
∂J

∂ξ0,α

, α = 1, 2, 3 (35)

It is easy to verify this, substituting (35) into (34) and using (26). One obtains that
j = {j0, j} = {ρ, ρv} is described by the relations (33) which satisfy the continuity
equation (29) identically. Thus, (6) is satisfied by (16) in virtue of (10).

III Variational principle

In general, equivalency of the system (10), (18), (19) and the system (6)–(8), (10)
can be verified by a direct substitution of variables ρ, S, v, defined by the relations
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(15)–(17), into the equations (6)–(8). Using equations (10), (18), (19), one obtains
identities after subsequent calculations. But such computations do not display a
connection between the integration and the invariance with respect to the relabeling
group (12). Besides a meaning of new variables ϕ, η is not clear. We shall use for
our investigations a variational principle. Note that for a long time a derivation
of a variational principle for hydrodynamic equations (6)–(8) was existing as a self-
dependent problem [26], [24], [14], [12], [27], [16], [23]. Existence of this problem was
connected with a lack of understanding that the system of hydrodynamic equations
(6)–(8) is a curtailed system, and the full system of dynamic equations (6)-(8), (10)
includes equations (10) describing a motion of the fluid particles in the given velocity
field. The variational principle can generate only the complete system of dynamic
variables (but not its closed subsystem). Without understanding this one tried to
form the Lagrangian for the system (6)–(8) as a sum of some quantities taken with
Lagrange multipliers. lhs of dynamic equations (6)–(8) and some other constraints
were taken as such quantities.

Now this problem has been solved (see review by Salmon [23]) on the basis of
the Eulerian version of the variational principle for the Lagrangian description (4),
where equations (10) appear automatically and cannot be ignored. In our version
of the variational principle we follow [23] with some modifications which underline a
curtailed character of hydrodynamic equations (6)–(8), because the understanding
of the curtailed character of the system (6)–(8) removes the problem of derivation
of the variational principle for the hydrodynamic equations (6)–(8).

We consider the ideal fluid as a conservative dynamic system whose dynamic
equations can be derived from the variational principle. This dynamic system is a
continuous set of many identical particles moving in some self-consistent potential
force field. The action functional has the form (4). Variation of the action with
respect to x generates six first order dynamic equations for six dependent variables
x, v = dx/dt, considered as functions of t and of independent curvilinear Lagrangian
coordinates ξ. It is a Lagrangian representation of hydrodynamic equations.

We prefer to work with Eulerian representation, when Lagrangian coordinates
(particle labeling) ξ = {ξ0, ξ}, ξ = {ξ1, ξ2, ξ3} are considered as dependent variables,
and Eulerian coordinates x = {x0,x} = {t,x}, x = {x1, x2, x3} are considered as
independent variables. Here ξ0 is a temporal Lagrangian coordinate which evolves
along the particle trajectory in an arbitrary way. Now the ξ0 is a fictitious variable,
but after integration of equations the ξ0 stops to be fictitious and turns to the
variable ϕ, appearing in the integrated system (10), (18), (19).

Further mainly space-time symmetric designations will be used, that simplifies
considerably all computations. In the Eulerian description the action functional (4)
is to be represented as an integral over independent variables x = {x0,x} = {t,x}.
One uses the Jacobian technique for such a transformation of the action (4),

Let us note that according to (22) the derivative dx/dt can be written in the
form

vα =
dxα

dt
≡ ∂J

∂ξ0,α

(
∂J

∂ξ0,0

)−1

, α = 1, 2, 3.

Then components of the 4-flux j = {j0, j} ≡ {ρ, ρv} can be written in the form

11



(33), provided the designation (5)

j0 = ρ = mρ0(ξ)
∂J

∂ξ0,0

≡ mρ0(ξ)
∂(x0, ξ1, ξ2, ξ3)

∂(x0, x1, x2, x3)
(36)

is used.
At such a form of the mass density ρ the four-flux j = {ji}, i = 0, 1, 2, 3 satisfies

identically the continuity equation (29) which takes place in virtue of identities (26),
(27). Besides in virtue of identities (26), (27) the Lin constraints (10) are fulfilled
identically

ji∂iξα = 0, α = 1, 2, 3. (37)

Components ji are invariant with respect to the relabeling group (12), provided the
function ρ0(ξ) transforms according to (14).

One has

ρ0(ξ)dtdξ = ρ0(ξ)
∂J

∂ξ0,0

dtdx =
ρ

m
dtdx

m

2

(
dxα

dt

)2

=
m

2

(
∂J

∂ξ0,α

)2 (
∂J

∂ξ0,0

)−2

=
m

2

(
jα

ρ

)2

,

and the variational problem with the action functional (4) is written as a variational
problem with the action functional

AE[ξ] =
∫

(
j2

2ρ
− ρE)dtdx, E =

V

m
(38)

where ρ = j0 and j = {j1, j2, j3} are fixed functions of ξ = {ξ0, ξ} and of ξα,i ≡ ∂iξα,
α = 1, 2, 3, i = 0, 1, 2, 3, defined by the relations (33). E is the internal energy of
the fluid which is supposed to be a fixed function of ρ, ∇ρ, S0(ξ)

E = E(ρ,∇ρ, S0(ξ)), (39)

where ρ is defined by (36) and S0(ξ) is some fixed function of ξ, describing initial
distribution of the entropy over the fluid.

The action (38) is invariant with respect to subgroup GS0 of the relabeling group
(12). The subgroup GS0 is determined in such a way that any surface S0(ξ) =const
is invariant with respect to GS0 . In general, the subgroup GS0 is determined by two
arbitrary functions of ξ.

The action (38) generates the six order system of dynamic equations, consisting
of three second order equations for three dependent variables ξ. Invariance of the
action (38) with respect to the subgroup GS0 admits one to integrate the system of
dynamic equations. The order of the system reduces, and two arbitrary integration
functions appear. The order of the system reduces to five (but not to four), because
the fictitious dependent variable ξ0 stops to be fictitious as a result of the integration.

Unfortunately, the subgroup GS0 depends on the form of the function S0(ξ) and
cannot be obtained in a general form. In the special case, when S0(ξ) does not
depend on ξ, the subgroup GS0 coincides with the whole relabeling group G, and the
order of the integrated system reduces to four.
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In the general case it is convenient to introduce a new dependent variable

S = S0(ξ).

According to (37) the variable S satisfies the dynamic equation (8)

ji∂iS = 0. (40)

In virtue of designations (28) and identities (26), (27) the equations (40), (37) are
fulfilled identically. Hence, they can be added to the action functional (38) as
side constraints without a change of the variational problem. Adding (40) to the
Lagrangian of the action (38) by means of a Lagrange multiplier η, one obtains

AE[ξ, η, S] =
∫
{ j2

2ρ
− ρE + ηjk∂kS}dtdx (41)

where the quantities j = {ρ, j} are determined by (33), and E = E(ρ,∇ρ, S). The
action (41) is invariant with respect to the relabeling group G which is determined
by three arbitrary functions of ξ.

To obtain the dynamic equations, it is convenient to introduce new dependent
variables ji, defined by (33). Let us introduce the new variables ji by means of
designations (33) taken with the Lagrange multipliers pi, i = 0, 1, 2, 3. Then the
action (41) takes the form

AE[ρ, j, ξ, p, η, S] =
∫
{ j2

2ρ
− ρE − pk[j

k −mρ0(ξ)
∂J

∂ξ0,k

] + ηjk∂kS}dtdx (42)

It is useful to keep in mind that four designations (33), introducing variables ρ,
j = ρv via variables ξ, are equivalent to three Lin constraints (10) together with
the designation (36), as it was shown in the end of sec.2. Addition of relations (33)
to the action (41) as side constraints is equivalent to the addition of relations (10),
(36) considered as side constraints.

For obtaining dynamic equations, the variables ρ, j, ξ, p, η, S are to be varied.
Let us eliminate the variables pi from the action (42). Dynamic equations arising
as a result of a variation with respect to ξα have the form

δAE

δξα

≡ L̂αp = −m∂k[ρ0(ξ)
∂2J

∂ξ0,i∂ξα,k

pi]+m
∂ρ0(ξ)

∂ξα

∂J

∂ξ0,k

pk = 0, α = 1, 2, 3 (43)

where L̂α are linear operators acting on variables p = {pi}, i = 0, 1, 2, 3. These
equations can be integrated in the form

pi = bg0(ξ0)∂iξ0 + bgα(ξ)∂iξα, i = 0, 1, 2, 3, (44)

where b is an arbitrary scale constant, ξ0 is some new variable (temporal Lagrangian
coordinate), gα(ξ), α = 1, 2, 3 are arbitrary functions of the labels ξ, g0(ξ0) is an
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arbitrary function of ξ0. The relations (44) satisfy equations (43) identically. Indeed,
substituting (44) into (43) and using identities (25), (26), one obtains

−m∂k

{
ρ0(ξ)

[
∂J

∂ξα,k

g0(ξ0)− ∂J

∂ξ0,k

gα(ξ)

]}
+ m

∂ρ0(ξ)

∂ξα

Jg0(ξ0) = 0, α = 1, 2, 3,

(45)
Differentiating braces and using identities (27), (26), one concludes that (45) is an
identity.

Setting for simplicity

∂kϕ = g0(ξ0)∂kξ0, k = 0, 1, 2, 3

one obtains
pk = b∂kϕ + bgα(ξ)∂kξα, k = 0, 1, 2, 3 (46)

Substituting (46) in (42), one can eliminate variables pi, i = 0, 1, 2, 3 from the
functional (42). The term gα(ξ)∂kξα∂J/∂ξ0,k vanishes, the term ∂kϕ∂J/∂ξ0,k gives
no contribution into dynamic equations. The action functional takes the form

Ag[ρ, j, ϕ, ξ, η, S] =
∫
{ j2

2ρ
− ρE − jk[b∂kϕ + bgα(ξ)∂kξα − η∂kS]}dtdx (47)

where gα(ξ) are considered as fixed functions of ξ which are determined from initial
conditions. The action (47) is a functional of indefinite fixed functions g(x). Varying
the action (47) with respect to ϕ, ξ, η, S, j, ρ, one obtains dynamic equations

δϕ : ∂kj
k = 0, (48)

δξα : Ωαβjk∂kξβ = 0, α = 1, 2, 3, (49)

δη : jk∂kS = 0, (50)

δS : jk∂kη = −ρ
∂E

∂S
, (51)

δj : v ≡ j/ρ = b∇ϕ + bgα(ξ)∇ξα − η∇S, (52)

δρ : − j2

2ρ2
− ∂(ρE)

∂ρ
+∂α

∂(ρE)

∂ρα

−b∂0ϕ− bgα(ξ)∂0ξα + η∂0S = 0, (53)

Here Ωαβ is defined by

Ωαβ = b

(
∂gα(ξ)

∂ξβ

− ∂gβ(ξ)

∂ξα

)
, α, β = 1, 2, 3 (54)

Deriving relations (49), (51), the continuity equation (48) was used. It is easy to
see that (49) is equivalent to (10), provided

det ‖ Ωαβ ‖6= 0 (55)

Then the equations (50) and (48) can be integrated in the form of (15) and
(16) respectively. Equations (51) and (52) are equivalent to (19) and (17). Finally,
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eliminating ∂0ξα and ∂0S from (53) by means of (49) and (50), one obtains the
equation (18) and, hence, the system of dynamic equations (10), (18), (19), where
designations (15)–(17) are used.

The curtailed system (6)–(8) can be obtained from equations (48)–(53) as follows.
Equations (48), (50) coincide with (6), (8). For deriving (7) let us note that the
vorticity ω ≡ ∇× v and v × ω are obtained from (52) in the form

ω = ∇× v =
1

2
Ωαβ∇ξβ ×∇ξα −∇η ×∇S (56)

v × ω = Ωαβ∇ξβ(v∇)ξα +∇S(v∇)η −∇η(v∇)S (57)

Let us form a difference between the time derivative of (52) and the gradient of
(53). Eliminating Ωαβ∂0ξα, ∂0S and ∂0η by means of equations (49), (50), (51), one
obtains

∂0v +∇v2

2
+

∂2(ρE)

∂ρ2
∇ρ +

∂2(ρE)

∂ρ∂S
∇S +∇ρβ

∂2(ρE)

∂ρβ∂ρ
−∇∂β

∂2(ρE)

∂ρβ

−∂E

∂S
∇S − Ωαβ∇ξβ(v∇)ξα +∇η(v∇)S −∇S(v∇)η = 0 (58)

Using (56), (57) the expression (58) reduces to

∂0v +∇v2

2
− v × (∇× v) +

1

ρ
∇(ρ2∂E

∂ρ
)− 1

ρ
∂β

[
ρ∇∂2(ρE)

∂ρβ

]
= 0 (59)

In virtue of the identity

v × (∇× v) ≡ ∇v2

2
− (v∇)v

the last equation is equivalent to (7). The form of the stress tensor (1) appears as a
result of transformations of the relation (59) to the form (7). The stress tensor (1)
is determined to within the tensor with a vanishing divergence.

Thus, differentiating equations (52), (53) and eliminating the variables ϕ, ξ, η,
one obtains the curtailed system (6)–(8), whereas the system (10), (18), (19) follows
from the system (48)–(53) directly (i.e. without differentiating). It means that the
system (10), (18), (19) is an integrated system, whereas the curtailed system (6)–(8)
is not, although formally they have the same order.

The action of the form (47), or close to this form was obtained by some authors
[27], [23], but the quantities gα, α = 1, 2, 3 are always considered as additional
dependent variables (but not as indefinite functions of ξ which can be expressed via
initial conditions). The action was not considered as a functional of fixed indefinite
functions gα(ξ).

The variable η was introduced, for making the action invariant with respect to
the transformations of the whole relabeling group (12). To understand what the
η means from the mathematical viewpoint, let us return to the action (38), where
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the internal energy E has the form (39). Adding new variables j by means of
designations (33), one obtains instead of (42)

AE[ρ, j, ξ, p] =
∫
{ j2

2ρ
− ρE − pk[j

k −mρ0(ξ)
∂J

∂ξ0,k

]}dtdx (60)

where E has the form (39).
Variation of (60) with respect to ξα leads to the equation

L̂αp = ρ
∂E(ρ, S0(ξ))

∂S0

∂S0

∂ξα

, α = 1, 2, 3 (61)

where linear operators L̂α are defined by (43). Equations (61) are linear non-uniform
equations for the variables p. A solution of (61) is a sum of the general solution (46)
of the uniform equations (43) and of a particular solution the non-uniform equations
(61). This particular solution depends on the form of the function S0 and cannot
be found in a general form. Adding an extraterm −ηjk∂kS with η satisfying (51) to
(41), a reduction of non-uniform equations (61) to uniform equations (43) appears
to be possible. Thus, the extravariable η is responsible for the particular solution of
(61).

From the viewpoint of the action (60) a dependence of the internal energy E
on the entropy means simply a dependence of E on the labels ξ via a function
S(ξ). If such a dependence cannot be expressed through one function (for instance
E = E[ρ, S1(ξ), S2(ξ)]) the ideal fluid is described by two entropies S1 and S2 and
by two temperatures T1 = ∂E/∂S1, T2 = ∂E/∂S2. Such a situation may appear
for a conducting fluid in a strong magnetic field, where there are two temperatures
– longitudinal and transversal.

Thus five equations (10), (18), (19) with S, ρ and v, defined respectively by
(15), (16) and (17), constitute the fifth order system for five dependent variables
ξ = {ξ0, ξ}, η. Equations (6), (8), (10), (18), (19) constitute the seventh order
system for seven variables ρ, ξ, ϕ, η, S.

IV Initial and Boundary Conditions

Boundary conditions describing vessel walls can be taken into account by means of
a proper choice of the internal energy E(x, ρ,∇ρ, S) which can include the energy
of the fluid in an external potential U .

E = E0(ρ,∇ρ, S) + U(t,x),

where U is some given external potential. For instance, let the fluid move inside a
volume V . Then

U(x) =

{
0, inside V
∞, outside V

Such a choice of the energy E provides that the fluid does not escape the volume V .
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In this section let us set for simplicity the scale constant b = 1, and consider
the case, when E does not depend on ∇ρ, and the fluid flow is considered in the
space-time region Ω defined by inequalities

Ω : t ≥ 0, x3 ≥ 0

The region Ω has two boundaries: I defined by the relations t = 0, x3 ≥ 0, and
B defined by the relations x3 = 0, t ≥ 0. The initial conditions for the system of
equations (6)–(8), (10) have the form

ρ(0,x) = ρin(x), vα(0,x) = vα
in(x), α = 1, 2, 3 (62)

S(0,x) = Sin(x), ξα(0,x) = ξα
in(x), α = 1, 2, 3 (63)

at x ∈ I (t = 0, x3 ≥ 0). Here ρin, vin, Sin, ξin are given functions of argument x.
The boundary conditions on the boundary B of Ω have the form:

ρ(x)|x3=0 = ρb(t,y), S(x)|x3=0 = Sb(t,y), {t,y} ∈ B (64)

vα(x)|x3=0 = vα
b (t,y), α = 1, 2, 3, {t,y} ∈ B (65)

ξα(x)|x3=0 = ξα
b (t,y), α = 1, 2, 3, {t,y} ∈ B (66)

where
y ≡ {x1, x2} (67)

Here ρb, Sb, vb, ξb are given functions of the argument {t,y}.
Let us show that indefinite functions g, S0, ρ0 can be expressed via initial and

boundary conditions (62)–(66). The initial conditions for the system (48)–(53) have
the form

ξα(0,x) = ξα
in(x), α = 1, 2, 3 (68)

ρ(0,x) = ρin(x), S(0,x) = S0[ξin(x)], (69)

ϕ(0,x) = ϕin(x), η(0,x) = ηin(x), (70)

(68)-(70) take place at x ∈ I. The functions ϕin(x), ηin(x) as well gα(ξ) are to be
determined from the relations

∂αϕin(x) + gβ[ξin(x)]∂αξβ
in(x)− ηin(x)

∂S0[ξin(x)]

∂ξβ
in

∂αξβ
in(x) =

= vα
in(x), α = 1, 2, 3; x ∈ I. (71)

It is clear that five functions g, ϕin, ηin cannot be determined unambiguously from
three relations (71).

There are at least two different approaches to determination of functions ξin(x)
and g(ξ).

(1) One fixes the functions ξα
in(x) in some conventional way, sets

ϕin(x) = 0, ηin(x) = 0, x ∈ I (72)
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and determines functions g from three relations (71).
(2) Functions g are fixed in some conventional way, and remaining functions are

determined from relations (71)
The first way. Let the condition (68) be given in the form

ξα(0,x) = ξα
in(x) = xα, α = 1, 2, 3, x ∈ I. (73)

In other words, at t = 0 the labels ξ coincide with the Eulerian coordinates. The
relations (71) take the form

gβ[ξin(x)] = vβ
in(x), α = 1, 2, 3; x ∈ I, (74)

which are resolved in the form

gα(ξ) = vα
in(ξ), α = 1, 2, 3, ξ3 > 0, (75)

Thus, the functions g are expressed through initial conditions (62).
The boundary conditions for the system of equations (48)-(53) have the form

ξα(x)|x3=0 = ξα
b (t,y), α = 1, 2, 3, {t,y} ∈ B (76)

S(x)|x3=0 = S0[ξb(t,y)] = Sb(t,y), {t,y} ∈ B, (77)

ρ(x)|x3=0 = ρb(x)|x3=0 , v(x)|x3=0 = vb(t,y), {t,y} ∈ B, (78)

ϕ(x)|x3=0 = η(x)|x3=0 = 0, {t,y} ∈ B, (79)

Let us set

ξα
b (t,y) = xα, α = 1, 2; ξ3

b(t,y) = −ct, (t,y) ∈ B, (80)

where c is a constant.
Writing relations (10) and (53) for ξ3 < 0 on the boundary B and using (79),

(80), one obtains constraints for the functions g(ξ)

gβ[ξb(t,y)]∂αξβ
b (t,y) = vα

b (t,y), α = 1, 2, {t,y} ∈ B (81)

gβ[ξb(t,y)]∂0ξ
β
b (t,y) = −Kb(t,y), {t,y} ∈ B, (82)

where

Kb(t,y) ≡ v2
b(t,y)

2
+

∂{ρb(t,y)E[ρb(t,y), Sb(t,y)]}
∂ρb(t,y)

, {t,y} ∈ B, (83)

Substituting relations (80) into (81), (82), one obtains three equations for deter-
mination of functions g(ξ). Resolving this system of equations with respect to g,
one obtains

gα(ξ) = vα
b (−ξ3/c, ξ1, ξ2), α = 1, 2; ξ3 < 0

g3(ξ) = c−1Kb(−ξ3/c, ξ1, ξ2), ξ3 < 0 (84)
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Thus, g(ξ) is determined by (75) for ξ3 > 0 and by (84) for ξ3 < 0. In other words,
the boundary conditions and the initial conditions determine the vector field g(ξ)
in different regions of the argument ξ. The field g(ξ) can describe both initial and
boundary conditions. For any fluid flow the system (10), (18), (19) of dynamic
equations for variables ϕ, η, ξ is to be solved under universal initial conditions (72),
(73) and under universal boundary conditions (79), (80). All essential information
on the fluid flow is found in the dynamic equations (10), (18), (19), where the
quantities S, ρ, v are determined by (15)-(17).

The second way. Let us choose the functions g in a simple form. Let for instance,

g1(ξ) = ξ2, g2(ξ) = 0, g3(ξ) = 0

Let us set
χ = ϕ, λ = ξ2, µ = ξ1

Then the expression (17) takes the form

u(χ, λ, µ, η, S) ≡ ∇χ + λ∇µ− η∇S = v (85)

where χ, λ, µ, are Clebsch potentials [21, 22]. Now six equations (6), (8), (49)-(53),
(55) [(49) for α = 3 is of no importance] for six dependent variables ρ, χ, λ, µ, η, S
do not contain indefinite functions and have an unambiguous form.

∂0ρ +∇(ρu) = 0, ∂0λ + (u∇)λ = 0

∂0µ + (u∇)µ = 0, ∂0S + (u∇)S = 0 (86)

∂0η + (u∇)η = −∂E

∂S
, ∂0χ + λ∂0µ− η∂0S +

1

2
u2 +

∂(ρE)

∂ρ
= 0

where u is defined by (85).
The initial conditions for variables ρ, χ, λ, µ, η, S are determined by relations

ρ(0,x) = ρin(0,x), S(0,x) = Sin(0,x), (87)

∇χin + λin∇µin − ηin∇Sin = vin (88)

Three equations (87), (88) do not determine the initial conditions

χ(0,x) = χin(x), λ(0,x) = λin(x), (89)

µ(0,x) = µin(x), η(0,x) = ηin(x), (90)

unambiguously.
If the fluid is described in terms of Clebsch potentials, the dynamic equations

contain neither arbitrary functions, nor information about the initial conditions. It
should be interpreted in the sense that the description (85)-(86) in terms of the
Clebsch potentials is a result of a change of variables in dynamic equations (6)-(8),
whereas the description (48)-(53) is a result of integration of the dynamic equations
(6)-(8). (10). In other words, the description (85)-(86) in terms of Clebsch potentials
relates to the description (48)-(53) in the same way, as a particular solution of a
system of differential equations relates to a general solution of the same system. Let
us note that there are many other ways for determination of indefinite functions
g(ξ).
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V Wave Function and Spin

The equations (6), (8), (10), (18), (19) can be derived from the action functional

A[ρ, ϕ, ξ, η, S] =
∫

ρ[−π0(ϕ, ξ, η, S)− 1

2
π2(ϕ, ξ, η, S)− E(x, ρ,∇ρ, S)]d4x (91)

where π = {π1, π2, π3}, and πk = pk − η∂kS, k = 0, 1, 2, 3 are determined by
relations (46)

πk(ϕ, ξ, η, S) ≡ b[∂kϕ + gα(ξ)∂kξα]− η∂kS, k = 0, 1, 2, 3. (92)

The action (91) results from the action (47) after elimination of the variable j from
the relations (47), (52). The functions g = {gβ(ξ)}, β = 1, 2, 3 are considered
as fixed functions of their arguments. Equations (6), (8), (10), (18), (19) can be
obtained as a result of variation with respect to ϕ, η, ξ, S, ρ respectively. Equation
(10) is obtained, provided the field g is non-potential. If the field g is potential
gα(ξ) = ∂Φ/∂ξα, it can be included in the variable ϕ by mean of the substitution

ϕ + Φ → ϕ,

In this case the action (91) does not depend on ξ, and (10) may be omitted.
Let us introduce n-component complex function ψ = {ψα}, α = 1, 2, . . . n, defin-

ing it by the relations

ψα =
√

ρeiϕuα(ξ), ψ∗α =
√

ρe−iϕu∗α(ξ), α = 1, 2, . . . n

ψ∗ψ ≡
n∑

α=1

ψ∗αψα

where (*) means the complex conjugate, uα(ξ), α = 1, 2, . . . n are functions of only
variables ξ, and satisfy the relations

− i

2

n∑

α=1

(u∗α
∂uα

∂ξβ

− ∂u∗α
∂ξβ

uα) = gβ(ξ), β = 1, 2, 3,
n∑

α=1

u∗αuα = 1 (93)

n is such a natural number that equations (93) admit a solution. In general n may
depend on the form of the arbitrary integration functions g = {gβ(ξ)}, β = 1, 2, 3.

It is easy to verify that

ρπk(ϕ, ξ, η, S) = −ib

2
(ψ∗∂kψ − ∂kψ

∗ · ψ)− η∂kSψ∗ψ, k = 0, 1, 2, 3 (94)

ρ = ψ∗ψ, j = −ib

2
(ψ∗∇ψ −∇ψ∗ · ψ)− η∇Sψ∗ψ (95)

The variational problem with the action (91) appears to be equivalent to the varia-
tional problem with the action functional

A[ψ, ψ∗, η, S] =
∫
{ib

2
(ψ∗∂0ψ − ∂0ψ

∗ · ψ) + η∂0Sψ∗ψ
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− 1

2ψ∗ψ
[
ib

2
(ψ∗∇ψ −∇ψ∗ · ψ) + η∇Sψ∗ψ]

2

− E[x, ψ∗ψ,∇(ψ∗ψ), S]ψ∗ψ}d4x (96)

Note that the function ψ considered as a function of independent variables {t,x}
is very indefinite in the sense that the same fluid flow may be described by different
ψ-functions. There are two reasons for such an indefiniteness. First, the functions
uα(ξ) are not determined uniquely by differential equations (93). Second, their
arguments ξ as functions of x are determined only to within the transformation
(12). Description of a fluid in terms of the function ψ is more indefinite, than the
description in terms of the hydrodynamic potentials ξ. Information about initial and
boundary conditions containing in the functions g(ξ) is lost at the description in
terms of the ψ-function. The ψ-function can be obtained from the Clebsch variables
by means of a proper change of variables [11].

Let the function ψ have n components. Regrouping components of the function
ψ in the action (96), one obtains the action in the form

AE[ψ, ψ∗, η, S] =
∫
{1

2
[ψ∗(ib∂0 + A0)ψ + (−ib∂0ψ

∗ + A0ψ
∗)ψ]−

−1

2
(ib∇ψ∗ −Aψ∗)(−ib∇ψ −Aψ)+

+
b2

4

n∑

α,β=1

Q∗
αβ,γQαβ,γρ +

b2

8ρ
(∇ρ)2 − ρE}d4x, ρ ≡ ψ∗ψ (97)

where
A = {A0,A}, A0 ≡ η∂0S, A ≡ η∇S,

Qαβ,γ =
1

ψ∗ψ

∣∣∣∣∣
ψα ψβ

∂γψα ∂γψβ

∣∣∣∣∣ , α, β = 1, 2, . . . n γ = 1, 2, 3 (98)

Corresponding dynamic equations have the form

δA
δψ∗α

= (ib∂0 + A0)ψα − 1

2
(ib∇+ A)2ψα − b2

4

n∑

µ,ν=1

Q∗
µν,γQµν,γψα

+
b2

2

n∑

ν=1

Qαν,γ∂γψ
∗
ν +

b2

2

n∑

ν=1

∂γ(Qαν,γψ
∗
ν) +

∂

∂ρ
[
b2

8ρ
(∇ρ)2 − ρE]ψα

−∂γ{ ∂

∂ργ

[
b2

8ρ
(∇ρ)2 − ρE]}ψα = 0, α = 1, 2, . . . n (99)

δA
δS

= ∂i(j
iη)− ∂(ρE)

∂S
= 0, (100)

δA
δη

= −∂i(j
iS) = 0, (101)

where j = {ρ, j} = {jk}, k = 0, 1, 2, 3 is defined by (95).
In the case of the irrotational flow, when gα(ξ) = ∂Φ(ξ)/∂ξα equations (93)

have a solution for n = 1, and the function ψ may have one component. Then all
Qαβ,γ ≡ 0, as it follows from Eq.(98).
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Let us consider an irrotational flow of a fluid with the internal energy per unit
mass defined by the relation (3), where m is the mass of a stochastic particle as-
sociated with the fluid. The internal energy does not depend on the entropy, and
according to (3), and (100) the variable η is a function of only labels ξ. Then the
expression η∂kS has the form fα(ξ)∂kξα. It may be included in the term gα(ξ)ξα,k.
It means that without a loss of generality one may set η ≡ 0, S ≡ 0. Then for an
irrotational flow, when ψ-function is one-component, Eq.(99) takes the form

δA
δψ∗

= ib∂0ψ − b

2

2

∇2ψ + (b2 − h̄2

m2
){ ∂

∂ρ

(∇ρ)2

8ρ
− ∂γ[

∂

∂ργ

(∇ρ)2

8ρ
]}ψ = 0 (102)

Choosing arbitrary constant b in the form b = −h̄/m, one obtains instead of Eq.(102)
the well known Schrödinger equation

ih̄∂0ψ +
h̄2

2m
∇2ψ = 0

where the complex variable ψ is known as the wave function. The Schrödinger
equation describes an irrotational flow of the Madelung fluid [4].

On this basis it is possible in general to identify the function ψ with the wave
function and consider the wave function as a way of description of any ideal fluid.
If the fluid flow is rotational, the dynamic equation in terms of the ψ-function is
nonlinear, even in the case (3) and at b = −h̄/m. In this case the ψ-function is not
one-component, and the quantities Qαβ,γ do not vanish generally.

In general, the dynamic equation (97) for the ψ-function is nonlinear and rather
complicated. But for special form (3) of the internal energy and for a special form
of the arbitrary phase constant b the dynamic equation in terms of the ψ-function
becomes linear and simple.

It is worth to note that the internal energy per unit mass (3) associates with
the mean diffusion velocity vdif = −D∇ρ/ρ describing the mean motion of random
wandering of stochastic particles (D is the diffusion coefficient). The diffusion ve-
locity is characteristic for any stochastic particles (both Brownian and quantum).
The Brownian fluid is dissipative, and the evolution of the fluid state ρ is described
directly by vdif by means of the continuity equation

∂0ρ +∇(ρvdif) = 0

For the ideal Madelung fluid the diffusion velocity influences on the fluid flow via the
internal fluid energy per unit mass determined by means of the relation (3). Besides
the diffusion coefficients D are different for Brownian particles and for quantum
ones, because the origin of the stochasticity is different in the two cases.

The number n of the ψ-function components in the actions (96) and (97) is ar-
bitrary. A formal variation of the action with respect to ψα and ψ∗α, α = 1, 2, . . . n
leads to 2n real dynamic equations, but not all of them are independent. There
are such combinations of variations δψα, δψ∗α, α = 1, 2, . . . n which do not change
expressions (94), (95). Such combinations of variations δψα, δψ∗α, α = 1, 2, . . . n do
not change the action (96), and corresponding combinations of dynamic equations
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δA/δψα = 0, δA/δψ∗α = 0 are identities that associates with a correlation between
dynamic equations. Thus, increasing the number n, one increases the number of
dynamic equations, but the number of independent dynamic equations remains the
same.

In such a situation it is important to determine the minimal number nm of the
ψ-function components, sufficient for a description of the given vector field gβ(ξ) in
the space Vξ of the labels ξ.

Note that under the relabeling transformations (12) the quantity g(ξ) transforms
as a vector

gβ(ξ) → g̃β(ξ̃) =
∂ξα

∂ξ̃β

gα(ξ), β = 1, 2, 3

It is necessary for the quantities (94), (95) and the action (91) to be invariant with
respect to the transformation (12)

Let G be a set of all vector fields gβ(ξ) in Vξ, and Gn be a set of such vector fields
gβ(ξ) in Vξ which can be presented in the form

gβ(ξ) =
n∑

k=1

η2
k(ξ)∂ζk(ξ)/∂ξβ, β = 1, 2, 3, η1 ≡ 1 (103)

where n is a fixed natural number and the functions ηk, ζk, k = 1, 2, . . . n are scalars
in Vξ. Under the relabeling transformation (12) the functions (103) transform as
follows

ηk(ξ) → η̃k(ξ̃) = ηk(ξ), ζk(ξ) → ζ̃k(ξ̃) = ζk(ξ), k = 1, 2, . . . n

gβ(ξ) → g̃β(ξ̃) =
∂ξα

∂ξ̃β

gα(ξ) =
∂ξα

∂ξ̃β

n∑

k=1

η2
k(ξ)

∂ζk(ξ)

∂ξα

=
n∑

k=1

η̃2
k(ξ̃)

∂ζ̃k(ξ̃)

∂ξ̃α

In other words, a vector field gβ(ξ) of the form (103) transforms into the vector field
g̃β(ξ̃) of the same form (103), and the set Gn is invariant with respect to the group
(12) of the relabeling transformations.

It is easy to see that

Gn−1 ⊆ Gn, G0 = ∅, n = 1, 2, . . .

because the nth term of the sum (103) can be combined with the first one, if ζn is
a function of ηn. Let

Sn = Gn\Gn−1, n = 1, 2, . . .

Then

G =
s=nm⋃

s=1

Ss, Sl = ∅, l = nm + 1, nm + 2, . . .

where nm is the number of non-empty invariant subsets of the set G. Each subset
Sk contains only such vector fields gβ(ξ) which associate with the k-component
ψ-function ψ = {ψα}, α = 1, 2, . . . k, having the components

ψ1 =

{
(1−

k∑

α=2

η2
α)ρ

}1/2

exp[i(ϕ + ζ1)],
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ψα = ηα
√

ρ exp[i(ϕ + ζα + ζ1)], α = 2, 3, . . . k

In particular, the set S1 associates with a irrotational flow, described by a one-
component ψ-function determined by one scalar ζ1; and the set S2 associates with
a rotational flow described by a two-component ψ-function, determined by three
scalar functions ζ1, η2, ζ2 (Clebsch variables).

In the conventional quantum mechanics the number n of the ψ-function com-
ponents is connected with the spin s of the particle, described by the ψ, by means
of the relation s = (n − 1)/2. The spin is considered as an internal property of a
quantum particle. Particles with different spins are considered as different physical
objects, described by different dynamic equations.

In a like manner the irrotational flow, when gβ(ξ) is described by one function ζ1,
associates with the kinematic spin (k-spin) s = 0, whereas the rotational flow, when
gβ(ξ) is described by three scalar functions ζ1, η2, ζ2, associates with the kinematic
spin s = 1/2. The term ”kinematic spin” (instead of ”spin” simply) is used now for
the following reasons.

First, the kinematic spin (k-spin) is determined by the form of the vector field
gβ(ξ), which arises essentially as a result of an integration of the equations (43). The
vector field gβ(ξ) is a kinematic structure, because it does not depend on the form
of the internal energy. At the same time the k-spin is not an internal property of
a particle in itself, because the action (96) describes, at least, two different k-spins
(s = 0 and s = 1/2) simultaneously, and the k-spin looks rather as an integration
constant, than a property of single fluid particles.

Second, there is a distinction between the transformation properties of the spin
and those of the k-spin under the space rotation group. Components of the n-
component ψ-function are scalars under the space rotation group for any value of
n (and for any value of the k-spin s). In the conventional quantum mechanics
the wave function transforms according to a representation of the rotation group.
In particular, a one-component wave function ψ (s = 0) is a scalar, whereas the
two-component ψ-function ψ (s = 1/2) transforms as a spinor under the rotation
group.

Taking into account the indefiniteness of the ψ-function, it is possible to change
transformation properties of the ψ-function, accompanying any spatial rotation by
a proper transformation of the group (12). The additional transformations (12) can
be chosen in such a way, that the two-component ψ-function becomes a spinor under
spatial rotations. Then the formal distinction between the ”k-spin” and the ”spin”
vanishes, and one can identify them.

For instance, let the two-component ψ-function is written in the form

ψ =
√

ρ exp[i(ϕ + σξ)]χ,

where ρ, ϕ, ξ are scalar functions of x, σ = {σα}, α = 1, 2, 3 are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and χ is a two-component constant column (χ∗χ = 1).
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Let any infinitesimal spatial rotation

x0 → x̃0 = x0, x → x̃ = x + ω × x + O(ω2), | ω |¿ 1 (104)

be accompanied by an infinitesimal transformation

ξ → ξ̃ = ξ − ω/2 (105)

Then the ψ-function transforms as a spinor with respect to the combined transfor-
mation (104), (105)

ψ(x) → ψ̃(x̃) =
√

ρ̃(x̃) exp[i(ϕ̃(x̃) + σξ̃(x̃))]χ = exp(−iωσ/2)ψ(x) + O(ω2)

and as a scalar with respect to the space rotation (104) alone.
If the dynamic system is described in terms of a two-component ψ-function, the

labels ξ are not mentioned at all, and the ψ-function can be considered equally
readily as a scalar and as a spinor.

For the two-component ψ-function the following identity takes place

(∇ρ)2 − (ψ∗∇ψ −∇ψ∗ψ)2 ≡ 4ρ∇ψ∗∇ψ − ρ2s2 (106)

ρ ≡ ψ∗ψ, s ≡ ψ∗σψ/(2ρ), σ = {σα} α = 1, 2, 3 (107)

where σα are Pauli matrices. In virtue of the identity (106) the action (96) reduces
to the form

A[ψ, ψ∗, η, S] =
∫
{1

2
[ψ∗(ib∂0 + A0)ψ + (−ib∂0 + A0)ψ

∗ψ]−

−1

2
[ib∇ψ∗ −Aψ∗][−ib∇ψ −Aψ] +

b2

2
(∇sα)(∇sα)ρ +

b2

8ρ
(∇ρ)2 − ρE}d4x, (108)

ρ ≡ ψ∗ψ, Ak ≡ η∂kS, k = 0, 1, 2, 3

where sα are defined by Eq.(107). The quantity s = {sα}, α = 1, 2, 3 associates
with the mean spin (especially, if b = −h̄/m), because it is constructed on the base
of the Pauli matrices. As one can see, in Eq.(108) sα convolutes only with sα, but
not with ∇α. As a result the action (108) is invariant with respect to space-time
rotations and relabeling transformations (12) separately.

It is interesting to note in this connection that the action AP[ψ, ψ∗] for the
dynamical system SP[ψ], described by the Pauli equation, implies the convolution
between s and ∇. The action AP[ψ, ψ∗] is invariant only with respect to the com-
bined transformation (104), (105), i.e. if the ψ is considered as a spinor, but it is
not invariant with respect to the transformation (104), when ψ is considered as a
scalar. In other words, the action AP[ψ, ψ∗] is not invariant with respect to the
rotation group (104), if SP[ψ] is considered as a fluidlike dynamic system. The same
action AP[ψ, ψ∗] can be made invariant with respect to the rotation group (104)
alone, provided ψ is considered as a fundamental object (not as an attribute of a
dynamic system). In the last case the ψ is declared as a spinor, but the mathemati-
cal object, described by the action AP[ψ, ψ∗], stops to be a dynamic system. It may
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be regarded, for instance, as a ”dynamic system restricted by quantum axiomatics”,
but it is not a dynamic system in the conventional sense of this term, because a
possibility of change of dynamic variables is restricted [any rotation (104) is accom-
panied by a proper relabeling (105)]. Of course, one may insist on the fundamental
character of ψ and state that ψ is a spinor, but then SP[ψ] stops to be a dynamic
system, and this fact may have far-reaching consequences (see details in ref. [28]).
There is a similar problem with the relativistic invariance of the dynamic system
SD[ψ] described by the Dirac equation [29].

Thus, the k-spin is an integral property of a fluid flow, connected with kinematic
properties of a dynamic system. Locally any vector field g(ξ) in the 3-dimensional
Vξ can be written in the form

g(ξ) = ∇ζ1 + η2∇ζ2 (109)

(expressed via Clebsch potentials), and one should expect that s = 1/2 is a maximal
k-spin of any flow in the 3-dimensional space. But possible singular points of the
representation (109) may lead to the circumstance that the spin of the total flow
appears to be higher, than s = 1/2. It is connected with so called helicity of a vector
field. Examples and discussion of such a velocity field can be found in ref. [30, 16]

VI Concluding remarks

Taking into account dynamic equations for labels ξ (Lagrangian coordinates consid-
ered as dynamic variables), one succeeds to integrate the system of hydrodynamic
equations for a ideal fluid. This integration leads to appearance of three arbitrary
functions gα, α = 1, 2, 3 of labels ξ. The functions gα form a vector g in the space
Vξ of labels ξ. The vector g can be expressed via initial and boundary values of the
fluid velocity. Dynamic equations appear to carry all essential information about the
fluid motion. This form of the fluid description may appear to be important in such
problems, where character of the fluid motion depends essentially on the character
of initial and boundary conditions, and one needs to investigate dynamic equations
together with boundary and initial conditions. For instance, such a necessity arises
at investigation of phenomena connected with a transition to irregular motion of a
fluid (turbulence).

Appearance of the field g activates the relabeling group. Invariant subsets of
this group can be used for a classification of the fluid flows. The field g admits
to introduce such concepts as ψ-function and k-spin which are new for the fluid
dynamics. In some special cases these new constructive concepts can be identified
with the wave function and the spin. Concepts of the wave function and of the spin
are fundamental concepts in the sense that they cannot be defined via other more
fundamental concepts. In the quantum mechanics the concepts of the wave function
and of the spin are defined by their properties, i.e. by a system of axioms (quantum
axiomatics).

On one hand there are derivative constructions of ψ-function and k-spin, con-
nected with stochastic electron via the construction of the statistical ensemble (ideal
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fluid). On the other hand, there are fundamental concepts of wave function and spin,
connected with the stochastic electron via system of axioms (quantum axiomatics).
Sometimes the ψ-function coincides with the wave function, but not always. Then
such a question arises. Which of the two conception is valid? ψ-function, or wave
function?

A like problem arose in the theory of thermal phenomena. On one hand there
was an axiomatic thermodynamics with its fundamental concepts of thermodynamic
potentials. On the other hand there was the statistical physics, where the thermo-
dynamic potentials were constructive quantities derived from the conception of the
heat as a chaotic motion of molecules. Then the constructive theory (statistical
physics) appeared to be more successful, than the axiomatic one (thermodynamics).
Now the question is yet open, although there is a series of arguments in favour of
the constructive approach which seems to be more reasonable and less enigmatic.

The considered general approach to the fluid dynamics is interesting from the
point of view that sometimes it permits to use advantages of the quantum technique
in the dynamics of usual fluids, as well as the general technique of the fluid dynamics
in application to quantum mechanics.
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