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Abstract

In the physical geometry (i.e. in geometry, described completely by its
world function) identical geometric objects have identical description in terms
of the world function. As a result spacelike straight segment is a three-
dimensional surface even in the space-time geometry of Minkowski. Tachyons
have two unexpected properties: (1) a single tachyon cannot be detected and
(2) the tachyon gas can be detected by its gravitational influence. Although
molecules (tachyons) of the tachyon gas moves with superluninal velocities,
the mean motion of these molecules appears to be underluminal. The tachyon
gas properties differs from those of usual gas. The pressure of the tachyon gas
depends on the gravitational potential and does not depend on temperature.
As a result the tachyon gas may form huge halos around galaxies. These halos
have almost constant density, and this circumstance can explain the law of
star velocities at the periphery of a galaxy. Properties of the tachyon gas
admit one to consider it as a dark matter.
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1 Introduction

At the metric approach to geometry the space-time geometry is described in terms
of the world function and only in terms of the world function. All geometrical
objects and all geometrical quantities are expressed in terms of the world function
σ. Such a representation of geometrical quantities will be referred as σ-immanent
representation. At the metric approach two different regions R1 and R2 of the
space-time may have different geometries described relatively be world functions
σ1 and σ2. Let a physical body, having the shape G1 = g1 (σ1) in the region R1
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evolves as a free moving body and appears in the region R2 with other geometry.
The shape of the body is described now as G2 = g2 (σ2). How are functions g1 and
g2 connected? As far as the physical geometry is a monistic construction, which is
described completely by the only quantity (world function), the only possibility may
take place

g1 (σ) = g2 (σ) = g (σ) (1.1)

The conventional (Riemannian) space-time geometry is pluralistic. It is described
by several basic geometrical quantities, whose properties are described by axioms.
In the pluralistic conception of geometry it is very difficult to consider the problem
of geometrical objects identification in different geometries. This problem is not
considered in the general relativity, which uses different geometries for different
regions of the space-time. The only geometric object which is considered in dynamics
of the general relativity is the world line of a free pointlike body. It is supposed that
the world line of a free body is a geodesic.

In the framework of Riemannian space-time geometry the shape of a geodesic
is determined by the metric tensor. This conventional definition of the world line
of a free body agrees with the definition (1.1) for timelike world lines. However it
disagrees with (1.1) for spacelike world lines, because in the physical geometry a
spacelike straight segment is not a one-dimensional line. It is a three-dimensional
surface. It is easy to verify, using definition of the straight segment T[P0P1] between
points P0 and P1

T[P0P1] =
{

R|
√

2σ (P0, R) +
√

2σ (R,P1) =
√

2σ (P0, P1)
}

(1.2)

Indeed, in the 4-dimensional space-time one equation (1.2) describes 3-dimensional
surface, in general. For timelike distances this surface degenerates into one-dimensional
line, because in this case the distance satisfies the anti-triangle axiom

√
2σ (P0, P2) +

√
2σ (P2, P1) ≤

√
2σ (P0, P1), σ (Pi, Pk) > 0, i, k = 0, 1, 2 (1.3)

For spacelike distances the triangle axiom (1.3) is not fulfilled, and the set of points
R satisfying equation (1.2) is 3-dimensional.

Of course, points of any segment of the ”straight” line

x = vt + x0, |v|2 > c2

satisfy the relation (1.2), but it is only a small part of points R satisfying (1.2).
Our conceptual logical consideration disagrees with the general opinion that

the segment of straight is a one-dimensional set in any geometry. For instance,
Blumental constructed the distance geometry [1], where he used metric approach to
geometry with distance which does not satisfy the triangle axiom. Blumental failed
to construct a curve in the framework of the metric approach. He was forced to
define a curve as continuous mapping of a segment of the numerical axis onto the
space, where the geometry is given. According to this definition the straight line
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is a one-dimensional set, that cannot be formulated in terms of a distance. It is a
remnant of the pluralistic geometric conception.

Ellipsoid ELP0P1P3 is defined in terms of distance

ELP0P1P3 =
{

R|
√

2σ (P0, R) +
√

2σ (P1, R) =
√

2σ (P0, P3) +
√

2σ (P1, P3)
}

(1.4)
where points P0, P1 are focuses of the ellipsoid, and P3 is some point on the surface
of the ellipsoid.

Degenerated ellipsoid, where the point P3 on its surface coincides with one of fo-
cuses is by definition segment T[P0P1] = ELP0P1P1 of straight between focuses P0, P1.
In the geometry, where distance satisfies the triangle axiom the degenerated ellip-
soid is a one-dimensional set. However, when triangle axiom is not satisfied the
degenerated ellipsoid is a (n− 1)-dimensional surface in n-dimensional space.

The straight segment is defined in the Euclidean geometry by the relation (1.2).
In the same form it is defined in the space-time geometry of Minkowski. In the proper
Euclidean geometry any smooth curve line is defined as a limit of a broken line, when
lengths of its links (straight segments) tend to zero. In the physical geometry a curve
is defined in the same form. If the curve describes a world line of a free particle, the
vectors describing adjacent links of the broken line are equivalent. Equivalence of
vectors means that vectors are in parallel and their lengths are equal. For timelike
world line these conditions lead to one-dimensional straight line. For the spacelike
world line (tachyon) these conditions lead to a world chain with wobbling links.
Amplitude of this wobbling is infinite and any link is an infinite three-dimensional
surface. A single tachyon described by such a world chain cannot be detected.
However, the tachyon gas may be detected by its gravitational field.

Tachyon gas is considered here, because the tachyon gas has characteristic prop-
erties of so-called dark matter. On one hand, one failed to detect single particles
of the dark matter. On the other hand, the dark matter form a huge halos around
galaxies with almost constant mass distribution inside the halo. Existence of such
halos is discovered by its gravitational influence on the star velocities in the galaxy
periphery. Tachyon gas has similar properties. A single tachyon cannot be detected
according to geometric properties. Besides, tachyon gas has almost constant mass
density in the gravitational field of a galaxy.

Tachyon is a hypothetical faster-than-light particle. Its rest mass is imaginary.
Such particles have not been detected. First such particles were considered by
A.Sommerfeld [2]. Particles with negative and imaginary masses were investigated
by Ya.P.Terletsky [3]. Tachyons were investigated also by other investigators [4, 5,
6, 7]. One considered not only tachyons, but also tachyonic fields which are results
of the tachyon quantization.

Unfortunately, effective description of tachyons is possible only in a discrete
space-time geometry. Conventional consideration of tachyons in the continuous
Riemannian space-time geometry leads to conclusion that tachyons do not exist,
whereas investigations of tachyons in the framework of a discrete space-time geome-
try leads only to the conclusion that a single tachyon cannot be detected. Impossi-
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bility of the tachyon detection does not mean that tachyons do not exist. Tachyons
may exist, but one cannot detect a single tachyon, even it will appear that a tachyon
may interact with some elementary particle. For instance, neutron decays sponta-
neously into proton, electron and neutrino. However, one cannot be sure that this
decay is not a result of collision with tachyon, because the tachyon gas may fill
the whole universe with almost constant density. In this relation the tachyon gas
properties remind the vacuum properties.

Such unusual properties of tachyons are conditioned by the fact that in the
discrete space-time geometry there are world chains instead of smooth world lines.
Links of the tachyon world chain are spacelike segments. Two adjacent points of
the tachyon world chain are divided by very large spatial distance. Discovering one
point of this world chain, one cannot detect the another point of the world chain.

Crucial point of our investigation is a use of the discrete space-time geometry,
whose properties differ strongly from properties of the Riemannian geometry and
other continuous geometries. Conventional mathematical technique of differential
geometry is inadequate in the discrete geometry. Linear vector space, which is a
foundation of the differential geometry, cannot be introduced in the discrete geom-
etry. Introducing the linear vector space formalism in the discrete geometry, one
obtains multivalence of such operations as summation of vectors and decomposition
of a vector into components. The only quantity which is common for continuous
geometry and the discrete one is the distance d or the world function σ = 1

2
d2.

In the discrete geometry, as well as in any physical geometry, the linear vector
space cannot been introduced, in general. Mathematical formalism of discrete ge-
ometry differs essentially from formalism of differential geometry. This formalism is
obtained from formalism of the proper Euclidean geometry, expressed in terms of the
world function of the Euclidean geometry. It can be found in the paper [8]. Particle
dynamics in the discrete space-time geometry is described in [9]. Formalism of the
physical geometry based on the world function is rather unusual and unexpected. It
is coordinateless, and it does not use concept of the linear vector space. Absence of
linear vector space in the discrete (physical) geometry is not customary for mathe-
maticians (and physicists). They cannot imagine a geometry without a linear vector
space. Typical question of mathematicians looks as follows: ”Why do you define
scalar product in the form (2.4)? The scalar product is an operation in the linear
vector space. The name of scalar product has been used already. Use another name
for the operation (2.4), for instance, σ-scalar product.” In reality the definition (2.4)
is a more general definition, because it does not use concept of linear vector space
and it coincides with the conventional definition via the linear vector space in the
case, when it can be introduced. According to the rules of logic the name scalar
product is to have the more general definition, i.e. (2.4) , whereas the conventional
definition via linear vector space must have the name ”linear scalar product”, or
scalar product with some additional epithet, because it is a more special definition,
using concept of the linear vector space. It is of no importance the fact, that the
conventional definition has been introduced then, when we did not know anything
on discrete geometry.
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If one considers a discrete space-time geometry, one may not use quantum prin-
ciples, because for usual particles of positive rest mass (tardions) the quantum
principles are corollaries of the space-time geometry discreteness. Consideration
of quantum principles in the discrete space-time geometry reminds description of
Brownian motion in terms of thermogen (in terms of axiomatic thermodynamics).
If the elementary length λ0 of discrete space-time geometry is connected with the
quantum constant ~ by means of the relation λ2

0 = ~/bc (constants ~, b, c are uni-
versal constants), the quantum effects for tardions can be explained as geometrical
effects of the discrete space-time geometry [10]. In such a situation it is useless to
quantize tachyons and to consider tachyonic fields. One should consider tachyons as
classical particles in the discrete space-time geometry.

Mathematical technique of differential (continuous) geometry cannot be applied
to a discrete geometry. In the discrete geometry there are no continuous world
lines, there are no differential equations and differential relations. One may not use
the phase space of coordinates and momenta for description of the particle state,
because the momentum is a result of differentiation along the continuous world
line. But one cannot use differentiation in the discrete geometry. In the discrete
space-time geometry the particle state is described by two points Ps, Ps+1. Vector
PsPs+1 describes the geometric momentum of a particle, and its geometric mass
µ = |PsPs+1| determines the usual particle mass m by the relation

m = bµ (1.5)

where b is an universal constant. The particle dynamics in the discrete space-time
geometry is described by the skeleton conception [9], where instead of the continuous
world line one uses the world chain C (broken line), whose links are vectors PsPs+1

of the same length µ

C =
⋃
s

PsPs+1, |PsPs+1| = µ = const, s = ...0, 1, 2, ... (1.6)

For free particle the adjacent vectors PsPs+1 and Ps+1Ps+2 are equivalent
(PsPs+1eqvPs+1Ps+2). It means that

((PsPs+1.Ps+1Ps+2) = |PsPs+1| · |Ps+1Ps+2|) ∧ (|PsPs+1| = |Ps+1Ps+2|) (1.7)

Relations (1.5) - (1.7) are not special suppositions. They are corollaries of the
dynamic conception in the discrete space-time geometry [9]. If the vector PsPs+1

is fixed the equivalence relation (1.7) determines the adjacent vector Ps+1Ps+2 am-
biguously, provided the space-time geometry is discrete. As a result the world chain
wobbles. Amplitude of this wobbling is of the order of the elementary length λ0

for tardions (µ2 > 0). This wobbling is a reason of quantum effects. For tachyons
(µ2 < 0) amplitude of this wobbling is infinite .

For tachyons the spatial distance between adjacent points Ps and Ps+1 is random,
and it may be infinitely large. As a result one cannot detect a single tachyon. In
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other words, single tachyons were not discovered in experiments, because they are
unobservable, but not because they do not exist.

However, if one cannot detect a single tachyon, it does not mean that one cannot
observe the gravitational influence of the tachyon gas, consisting of many unobserv-
able tachyons. Unobservable tachyons may form so-called dark matter, which form
large spherical halo around some galaxies. Existence of such a halo is necessary for
explanation of the rotational velocities of stars (rotation curves) in some galaxies
[11]. In these galaxies the rotational velocities of stars do not depend practically on
the distance r from the galaxy core. Sometimes the star velocities increase arises
with increasing of the distance r. If the gravitating mass is concentrated in the
galaxy core, then the Newtonian force of gravitation is proportional to r−2, and
rotational velocity is to be proportional r−1/2. Inside the gravitating sphere with
uniform distribution of the mass the Newtonian gravitation force is proportional to
r, and the rotational velocity is proportional to r.

In this paper we try to calculate parameters of the tachyon gas in order to
determine, whether the tachyon gas can fill the halo of galaxies with necessary
density.

2 Discrete space-time geometry

Discrete geometry is obtained as a generalization of the proper Euclidean geometry
GE, which is constructed usually as a logical construction. Conventionally one uses
the Euclidean method, when all statements of GE are deduced from a system of
axioms, describing properties of simplest geometrical objects of GE. The Euclidean
method is inadequate for construction of the discrete geometry Gd. Inadequacy of
the Euclidean method is connected with the fact, that one does not know, how
the simplest geometrical objects of GE look in other geometries. For instance, the
straight segment T[P0P1] between the points P0 and P1 is one-dimensional line in GE,
whereas T[P0P1] is a surface in Gd. There is only one quantity, which is common for
GE and Gd. It is the distance d (P0, P1) between two arbitrary points P0 and P1 of
the point set Ω, where the geometry is given. It is more effective to use the world
function σ = 1

2
d2 instead of the distance d, because the world function σ is always

real (even in the geometry of Minkowski, where d may be imaginary).
The world function σ is a real single-valued function. It is defined by the relation

[8]

σ : Ω× Ω → R, σ(P,Q) = σ(Q,P ), σ(P, P ) = 0, ∀P,Q ∈ Ω (2.1)

To generalize GE onto Gd, one needs to describe GE in terms of the Euclidean world
function σE. Thereafter replacing σE by the world function σd of Gd in all statements
of GE, one obtains all statements of Gd. The world function σd of Gd may be taken
in the form

σd (P, Q) = σM (P,Q) +
λ2

0

2
sgn (σM (P,Q)) , ∀P, Q ∈ Ω (2.2)
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where σM is the world function of the Minkowski geometry GM, and λ0 is the ele-
mentary length. Due to relation (2.2) in Gd all distances satisfy the relation

|ρd (P, Q)| =
∣∣∣
√

2σd (P,Q)
∣∣∣ /∈ (0, λ0) , ∀P, Q ∈ Ω (2.3)

which is definition of the discrete geometry.
Being presented in terms of the world function σE, the proper Euclidean geometry

GE contains two kinds of relations: (1) general geometric relations, which contains
only world function σE, and (2) special relations of the geometry GE, which are
constraints, imposed on the world function σE. The approach, when a geometry is
described in terms and only in terms of the world function, will be referred to as
metric approach. Any geometry described completely by the world function will be
referred to as a physical geometry.

Let us adduce some general geometric definitions which are important in the
particle dynamics:

Vector PQ is an ordered set {P, Q} of two points P,Q (but not an element of the
linear vector space as usually). Scalar product (P0P1.Q0Q1) of two vectors P0P1

and Q0Q1 is defined by the relation [8]

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0)− σ (P0, Q0)− σ (P1, Q1) (2.4)

The length |PQ| of the vector PQ is defined by the relation

|PQ|2 = (PQ.PQ) = 2σ (P, Q) (2.5)

n vectors P0P1,P0P2, ...P0Pn are linear dependent, if and only if the Gram
determinant

Fn (Pn) = det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n, Pn ≡ {P0, P2, ...Pn} (2.6)

vanishes
Fn (Pn) = 0 (2.7)

Two vectors P0P1 and Q0Q1 are equivalent (equal) (P0P1eqvQ0Q1), if the vectors
are in parallel [8]

(P0P1 · Q0Q1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| (2.8)

and their lengths are equal

σ (P0, P1) = σ (Q0, Q1) (2.9)

According to (2.8), (2.9) the equivalence definition has the form (1.7)

P0P1eqvQ0Q1 : (P0P1.Q0Q1) = |P0P1|2 ∧ |P0P1|2 = |Q0Q1|2 (2.10)
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All general geometric relations (2.4) - (2.10) are obtained as properties of the
linear vector space. However, they do not contain any reference to the linear vector
space. They are written in terms of the world function σE of the proper Euclidean
geometry, and they may be used in any physical geometry even in the case, when
one cannot introduce linear vector space in this geometry. To use the relations (2.4)
- (2.10) in a discrete geometry, it is sufficient to use the world function σd of the
discrete geometry Gd in them.

Formally general geometric relations (2.4) - (2.10) realize some processing of
information, contained in the world function. Such a processing is to be universal,
i.e. it is uniform for all generalized geometries. This method of processing is known
for the proper Euclidean geometry GE. It may be applied for construction of general
geometric relations for other generalized geometries. In the case, when one can
introduce linear vector space, such a processing admits one to construct the particle
dynamics in the space-time geometry, equipped by the linear vector space. As far
as the general geometric relations (2.4) - (2.10) are universal in the sense that they
do not refer to the linear vector space, they may be used for construction of the
particle dynamics in those space-time geometries, where introduction of the linear
vector space is impossible.

Such a construction of geometry is very effective, because it does not need proofs
of numerous theorems and a test of the axioms compatibility. Besides, the geometry
can be constructed in the coordinateless form. Monistic character of the geometry
(description in terms of one basic quantity - world function) provides automatically
a correct connection between all secondary quantities in all physical geometries.
Ascertainment of a connection between different geometric quantities is the main
problem of a pluralistic construction of a geometry, which is based on a use of several
independent basic quantities.

The special relations of the proper Euclidean geometry have the form [8]:
I. Definition of the metric dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (2.11)

where Fn (Pn) is the n-th order Gram’s determinant (2.6). Vectors P0Pi, i =
1, 2, ...n are basic vectors of the rectilinear coordinate system Kn with the origin at
the point P0. The covariant coordinates of the point P in the coordinate system Kn

are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (2.12)

The metric tensors gik (Pn) and gik (Pn), i, k = 1, 2, ...n in Kn are defined by the
relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (2.13)
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II. Linear structure of the Euclidean space:

σE (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω

(2.14)
where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the vectors P0P, P0Q respectively in the coordinate system K.

III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (2.15)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (2.16)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution. Conditions I –
IV contain a reference to the dimension n of the Euclidean space, which is defined
by the relations (2.11).

Special relations of the proper Euclidean geometry GE may be not valid for other
physical geometries. In some cases these relations may used partly. For instance,
the metric dimension may be defined locally. Instead of constraint (2.11) one uses
the condition

∀P0 ∈ Ω, ∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk (Pk) = 0, k > n
(2.17)

where all skeletons Pn contain only infinitely close points, that is possible only in
a continuous geometry . The conditions (2.17) determine the metric dimension for
locally flat (Riemannian) geometry.

All relations I – IV are written in terms of the world function. They are con-
straints on the form of the world function of the proper Euclidean geometry.

The proper Euclidean geometry looks in the σ-representation quite different, than
in conventional representation on the basis of the linear vector space. For instance,
such a quantity as dimension has two different meanings in the σ-representation. On
one hand, the metrical dimension nm is the maximal number of linear independent
vectors, which is determined by the relations (2.11). On the other hand, the coor-
dinate dimension nc, is the number of coordinates, which is used at the description
of the point set Ω. In the proper Euclidean geometry GE the coordinate dimension
coincides with the metric dimension (nc = nm), and this fact is a corollary of special
(not general geometric) relations (2.11), (2.12)

In general, the coordinate labelling of points of Ω has no relation to the geometry.
In the proper Euclidean geometry the two dimensions coincide, because the coordi-
nate dimension nc is determined by the special conditions (2.11), (2.12), which are
characteristic for the proper Euclidean geometry. In the geometry Gd the number
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nm of linear independent vectors is more, than the number of coordinates nc. For
instance, for six points P5 = {P0, P1...P5}

P0 = {0, 0, 0, 0} , P1 = {0, l, 0, 0} , P2 = {0, 0, l, 0} ,

P3 = {0, 0, l, 0} , P4 = {0, 0, 0, l} , P5 = {a, 0, 0, 0}

the Gram determinant F5(P5) vanishes in the geometry of Minkowski GM with the
world function

σM (x, x′) =
1

2

(
x0 − x′0

)− 1

2
(x− x′)2

(2.18)

However, the Gram determinant F5(P5), calculated in the discrete geometry Gd with
the world function σd, given by (2.2) does not vanish.

F5(P5) = d
(−a2l6 + 3al7 − l8

)
+ O

(
d2

)
(2.19)

Here d = λ2
0/2 ¿ a2, l2. For five points P4 = {P0, P1...P4} one obtains in Gd

F4(P4) = −l8 − 4l6d + O
(
d2

)
(2.20)

Thus, in general, the metric dimension nm ≥ 5 in Gd. In Gd the metric dimension
nm ≥ 5 cannot coincide with the coordinate dimension nc = 4. It means essentially
that one cannot introduce a finite number of linear independent basic vectors and
expand space-time vectors over these basic vectors. It is very unexpected, because
the conventional construction of a differential geometry (for instance, the Rieman-
nian one) starts, giving n-dimensional manifold with a coordinate system on it. Of
course, one assumes, that the maximal number of linear independent basic vectors
at any point is equal to n = nm = nc. Only in this case one can expand vectors over
basic vectors and use operations, defined in the linear vector space. In the case of
a discrete space-time geometry, where nm 6= nc, the linear vector space cannot be
introduced, although the coordinate system can be introduced, and the coordinate
dimension nc = 4 as in the space-time geometry of Minkowski. Four coordinates
x = {x0, x1, x2, x3}, xk ∈ R are defined as usually.

Note, that the conditions (2.11), defining metric dimension nm contain a lot of
constraints, and all they are special conditions of GE. It means that there is a lot of
physical geometries, where nm 6= nc, and one cannot introduce a linear vector space
there. In the limit d → 0, F5(P5) = 0 in (2.19), and Gd transforms to GM. In this
case the metric dimension nm = 4 coincides with the coordinate dimension nc = 4.
It means that one may use approximately the space-time geometry GM in the case,
when typical lengths l of vectors are much greater, than the elementary length λ0.
In this case one may set approximately λ0 = 0, and suppose that nm = nc.

The set of the Gram determinants values Fn (Pn), n = 2, 3, ... may be such, that
one cannot introduce the metric dimension nm. Apparently, the discrete space-time
geometries are geometries without a definite metric dimension. Such ”dimension-
less” geometries look especially exotic. Contemporary researchers deal only with
the Euclidean method, which uses only space-time geometries of definite dimension.
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They can hardly conceive properties of ”dimensionless” space-time geometries. On
the other hand, the classical particle dynamics does not work in microcosm, de-
scribed by the geometry of Minkowski. As far as the discrete (”dimensionless”)
space-time geometries are not known for most researchers, they use quantum dy-
namics, which imitates the discrete geometry properties. This imitation is arbitrary
and desultory. Besides, this imitation is not complete. There are such properties
of real particle dynamics, which cannot be imitated by quantum dynamics in the
space-time of Minkowski.

We see that coincidence of metric dimension nm with the coordinate dimension
nc and a construction of a smooth manifold with the dimension n = nm = nc is a
special property of the proper Euclidean geometry GE, which is not a general geo-
metric property. The conventional Euclidean method of the differential geometry
construction starts from the definition of a smooth manifold with fixed dimension.
Such a method is not a general method of the generalized geometries construction,
because it uses special properties of GE, which are not characteristic for all general-
ized geometries, generally speaking. In general, a use of the coordinate description
for the generalized geometries construction is a use of special properties of the proper
Euclidean geometry GE for such a construction. Such an approach cannot be a gen-
eral method of the generalized geometries construction. Using special properties
of GE, one obtains only a part of possible generalized geometries. In particular, a
use of the coordinate description does not admit one to construct geometries with
indefinite metric dimension and with intransitive equality relation. However, the
coordinate labelling of points of Ω has nothing to do with a construction of a man-
ifold. The coordinate labelling of points may be used always, and it has no relation
to a construction of generalized geometries. The coordinate labelling becomes to
deal with the generalized geometry construction, when one imposes the condition
nc = nm.

The relation nc = nm is a special property of the proper Euclidean geometry GE,
and it may be wrong for many physical geometries, because physical geometries may
have no definite metric dimension. Using the relation nc = nm at the construction
of a generalized geometry, one may meet such a situation, when the real space-time
geometries appear beyond the scope.

3 Dynamics of particle with two-point skeleton

In the discrete space-time geometry the state of a particle (physical body) is de-
scribed by its skeleton Pn = {P0, P1, ...Pn}, consisting of n + 1 space-time points,
connected rigidly [9], It is a corollary of mathematical formalism, based on a use
of the world function. Phase space of coordinates and momenta cannot be used,
because in the discrete geometry the operation of differentiation, which is necessary
for the momentum definition, is not defined in the discrete geometry. The skeleton
may be considered as a discrete analog of a frame connected rigidly with a physi-
cal body (particle). Tracing the motion of the skeleton one may trace the motion
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of the particle. The state of a pointlike particle is described by a two-point skele-
ton P1 = {P0, P1}. The vector P0P1 describes energy-momentum of the particle,
and µ = |P0P1| is a geometric mass of the particle, connected with usual mass by
the relation (1.5). Information on position of two skeleton points is sufficient for
description of the state of a pointlike particle. Dynamics of the pointlike particle
skeleton P1 is described by the world chain (1.6), (1.7). According to these relations
and definition of the scalar product (2.4) the dynamic equations for the pointlike
particle are written in the form

σ (Ps−1, Ps) = σ (Ps, Ps+1) , s = ...0, 1, 2... (3.1)

σ (Ps−1, Ps+1) = 4σ (Ps−1, Ps) , s = ...0, 1, 2... (3.2)

Solving dynamic equations (3.1), (3.2), one can determine set of point of the world
chain.

In the inertial coordinate system of the Minkowski geometry, where s = 1, the
points P0, P1, P2 have coordinates

P0 = {x0,x} , P1 = {x0 + p0,x + p} , P2 = {x0 + 2p0 + α0,x+2p + α} (3.3)

The 4-vector α = {α0,α} is a discrete analog of the acceleration vector.
Let us choose world function σM in the form, which it has in the extended

general relativity [12, 13] with slight gravitational field described by the gravitational
potential V (x)

σM (x, x′) =
1

2

((
c2 − 2V (y)

)
(x0 − x′0)

2 − (x− x′)2
)

, y =
x + x′

2
(3.4)

where V = V (y) is a gravitational potential at the point y, and the world function
σd has the form (2.2). One obtains in Gd

(
c2 − 2V

)
(p0 + α0)

2−(p + α)2+ελ2
0 =

(
c2 − 2V

)
p2

0−p2+ελ2
0 = µ2, ε = sgn

(
µ2

)
(3.5)(

c2 − 2V
)
(2p0 + α0)

2−(2p + α)2+ελ2
0 = 4

((
c2 − 2V

)
p2

0 − p2 + ελ2
0

)
, ε = sgn

(
µ2

)
(3.6)

Here quantities x = {x0,x} , p = {p0,p} are supposed to be given and 4-vector
α = {α0,α} is to be determined from dynamic equations (3.5), (3.6). It follows
from (3.5) that

p0 =

√
p2 + ε |µ|2 − ελ2

0√
c2 − 2V

(3.7)

The dynamic equations have the same form for timelike (µ2 > 0, ε > 0) and space-
like (µ2 < 0, ε < 0) world chains. We have two equations for four components of
4-vector α. As a result the solution is not unique, in general. We consider separately
two different cases: (1) p0 6= 0 and (2) p0 = 0.

All quantities in the discrete geometry will be referred be names, which they
have in the continuous (Riemannian) geometry at λ0 = 0.
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3.1 The case p0 6= 0

After transformation of equations (3.5), (3.6) one obtains two relations

α0 =
2αp + 3ελ2

0

2p0 (c2 − 2V )
(3.8)

(v2 − (c2 − 2V ))

(c2 − 2V )

(
α‖ +

3
2
ελ2

0p

(p2 − p2
0 (c2 − 2V ))

)2

−α2
⊥ = r2, v =

p

p0

(3.9)

where the quantity r is defined by the relation

r2 = −3ελ2
0 −

9

4

λ4
0

p2
0 (v2 − (c2 − 2V ))

, v =
p

p0

(3.10)

α‖ = p
(αp)

p2
, α⊥ = α−α‖, α2

‖ =
(αp)2

p2
, α‖ =

αp

p
, p2 = p2 (3.11)

Here α‖ is the component of 3-vector α which is in parallel with the vector p,
whereas α⊥ is the components of 3-vector α, which are perpendicular to the vector
p.

Vector v = p/p0 may be interpreted as 3-velocity of a particle described by world
chain (1.6), (1.7). In the case of continuous Riemannian geometry (λ0 → 0) v is the
usual 3-velocity.

In the case of timelike vector P0P1 (tardion) ε = 1, v2 < c2and according to
(3.7) µ = |µ|, if λ0 ¿ µ, V ¿ c2 and p ¿ cp0 (nonrelativistic case). In this case
equation (3.9) has the form

(
α‖ − 3λ2

0

2µ
v

)2

+ α2
⊥ = r2

1, r2
1 = −r2 ' 3λ2

0 +O (
λ2

0

)
(3.12)

Solution of this equation has the form

α‖ =
3λ2

0

2µ
v +

√
3λ0 cos θ, α⊥1 =

√
3λ0 sin θ cos φ, α⊥2 =

√
3λ0 sin θ sin φ (3.13)

α0 =
3λ2

0

2µ
v2 +

√
3λ0v cos θ +

3

2

λ2
0

µ
, (3.14)

Here θ, φ are arbitrary real numbers. It means that the difference between adjacent
vectors P0P1 and P1P2, described by the 4-vector α, is determined nonuniquely.
The particle world chain wobbles with amplitude of the order of λ0. Statistical
description of this wobbling leads to the Schrödinger equation [10], provided λ2

0 =
~/ (bc).

In the case of tachyon, when vector P0P1 is spacelike, ε = −1 and v2 > c2.
Equation (3.9) takes the form

(v2 − (c2 − 2V ))

(c2 − 2V )

(
α‖ −

3
2
λ2

0v

p0 (v2 − (c2 − 2V ))

)2

−α2
⊥ = r2, v =

p

p0

(3.15)
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where

r2 = 3λ2
0 −

9

4

λ4
0

p2
0 (v2 − (c2 − 2V ))

(3.16)

and r2 > 0, if λ0 is small enough (λ2
0 < p2

0c
2). Solution of equation (3.15) is also

nonunique

α‖ =
3λ2

0

2p0 (v2 − (c2 − 2V ))
v +

r
√

c2 − 2V√
v2 − (c2 − 2V )

cosh θ (3.17)

α⊥1 = r sinh θ cos φ, α⊥2 = r sinh θ sin φ v =
p

p0

=
p
√

(c2 − 2V )√
p2 − |µ|2 + λ2

0

(3.18)

α0 =
2αp− 3λ2

0

2p0 (c2 − 2V )
=

p

(
3λ2

0

2p0(v2−(c2−2V ))
v + r

√
c2−2V√

v2−(c2−2V )
cosh θ

)
− 3

2
λ2

0

p0 (c2 − 2V )
(3.19)

Here θ, φ are arbitrary real numbers. But now the wobbling amplitude is infinite
because of functions cosh and sinh. The wobbling amplitude is infinite even in the
case of space-time geometry of Minkowski, when λ0 = 0. Components of the tachyon
velocity u are defined by relations

u =
p + α

p0 + α0

(3.20)

One obtains the following expressions

u‖ =
p + α‖
p0 + α0

=

(
p + 3λ2

0

2p0(v2−(c2−2V ))
v + r

√
c2−2V√

v2−(c2−2V )
cosh θ

)

p0 +
p

(
3λ2

0
2p0(v2−(c2−2V ))

v+ r
√

c2−2V√
v2−(c2−2V )

cosh θ

)
− 3

2
λ2
0

p0(c2−2V )

=
p0 (c2 − 2V )

p
+O (

cosh−1 θ
)

(3.21)

u⊥1 =
α⊥1

p0 + α0

=
r sinh θ cos φ

p0 +
p

(
3λ2

0
2p0(v2−(c2−2V ))

v+ r
√

c2−2V√
v2−(c2−2V )

cosh θ

)
− 3

2
λ2
0

p0(c2−2V )

=

√
1− (c2 − 2V )

v2

√
(c2 − 2V )

sinh θ

cosh θ
cos φ +O (

cosh−1 θ
)

(3.22)

Averaging components of u, one assumes, that all directions are equiprobable. The
quantities p0, p are fixed at the averaging. Then one uses the formula

〈u〉 = lim
Θ→∞

1

N

∫ Θ

−Θ

sin θdθ

∫ 2π

0

u cosh θdφ, N = 4π sinh Θ (3.23)
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where symbol 〈...〉 means averaging. One obtains as a result of averaging

〈u⊥1〉 = 〈u⊥2〉 = 0 (3.24)

〈
u‖

〉
=

p0 (c2 − 2V )

p
+O (

cosh−1 Θ
)

=
(c2 − 2V )

v
< c (3.25)

〈
u2
‖
〉

=
〈
u‖

〉2
= 〈u〉2 =

(c2 − 2V )
2

v2
(3.26)

〈
u2
⊥
〉

= 2π
p2

0 (c2 − 2V ) (v2 − c2 + 2V )

p24π sinh Θ

∫ Θ

−Θ

sinh2 θ

sinh2 θ − 1
cosh θdθ +O (

cosh−1 Θ
)

=
p2

0

p2

(
c2 − 2V

) (
v2 − c2 + 2V

)
+O (

cosh−1 Θ
)

(3.27)

In the limit Θ →∞
〈
u2
⊥
〉

=
(c2 − 2V ) (v2 − c2 + 2V )

v2
< c2 (3.28)

According to (3.24), (3.26)

〈
u2

〉− 〈u〉2 =
〈
u2
⊥
〉

=
(
c2 − 2V

) (
1− c2 − 2V

v2

)
< c2 (3.29)

If p0 → 0, then v = p/p0 →∞ and

〈
u2

〉− 〈u〉2 =
(
c2 − 2V

)
(3.30)

The tachyon gas velocity dispersion does not depend on λ0 and on parameters
p0, p. This circumstance explains averaging (3.23) at fixed parameters p0, p. The
obtained results are valid in the continuous space-time geometry, when λ0 = 0. The
results obtained above cannot be obtained formally for the case, when p0 = 0. This
case is considered separately.

3.2 The case p0 = 0

In this case equations (3.5), (3.6) take the form

(
c2 − 2V

)
α2

0 − (p + α)2 − λ2
0 = −p2 − λ2

0 = − |µ|2 , (3.31)

(
c2 − 2V

)
α2

0 − (2p + α)2 − λ2
0 = 4

(−p2 − λ2
0

)
, (3.32)

These equations are reduced to the form

αp = α‖p =
3

2
λ2

0,
(
c2 − 2V

)
α2

0−α2
⊥ − α2

‖ = 3λ2
0+

(
3λ2

0

2p

)
(3.33)
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Solution of equations (3.33) has the form

α0 =
r2 cosh θ√
c2 − 2V

, α‖ =
3λ2

0

2p
, α⊥1 = r2 sinh θ cos φ, α⊥2 = r2 sinh θ sin φ,

(3.34)

r2
2 = 3λ2

0 +
9λ4

0

4p2
= 3λ2

0 +
9λ4

0

4
(|µ|2 − λ2

0

) (3.35)

Here θ, φ are arbitrary real numbers, as in the case p0 6= 0.
Let us average u and u2, defined by relations (3.20) (3.34). Using relations of

the type (3.23), one obtains

〈
u‖

〉
=

〈
p + α‖
p0 + α0

〉
=

〈(
p + 3λ2

0

p

)√
c2 − 2V

r1 cosh θ

〉
= 0, 〈u⊥〉 = 0 (3.36)

〈
u2
‖
〉

=
〈
u‖

〉2
= 0 (3.37)

〈
u2
⊥
〉

=

〈∣∣∣∣
α⊥
α0

∣∣∣∣
2
〉

=

〈(
sinh θ

cosh θ

√
c2 − 2V

)2
〉

=
2π (c2 − 2V )

4π sinh Θ

∫ Θ

−Θ

sinh2 θ

cosh θ
dθ

=
(
c2 − 2V

)
+O (

cosh−1 Θ
)

(3.38)

As a result one obtains in the limit Θ →∞
〈
u2

〉
= lim

Θ→∞

(〈
u2
‖
〉

+
〈
u2
⊥
〉)

=
(
c2 − 2V

)
(3.39)

Results (3.36) – (3.39) agree with relations (3.24), (3.26), (3.30) in the case, when
p0 ¿ p, and the velocity v = p/p0 →∞.

In general, the tachyon gas may be described by some distribution of its param-
eters p0,p (but not only by fixed values of these parameters). It influences slightly
on the velocity distribution in the tachyon gas.

The pressure P of the tachyon gas is defined by the relation

P =
1

3
ρ

(〈
u2

〉− 〈|u|〉2) (3.40)

Here ρ = ρ (x) is the tachyon gas mass density. It follows from (3.37), (3.39) that

P (x) =
1

3
ρ (x)

(
c2 − 2V (x)

)
(3.41)

All tachyon gas parameters ρ,u, P are considered as functions of the space-time
points x = {x0,x}. But gravitational potential V (x) is considered as a function of
the spatial coordinates x.
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4 Balanced state of the tachyon gas in the

gravitational field

In the gravitational field of a galaxy the tachyon gas may be at rest, if the balance
condition is fulfilled

∇P = ρ∇V (4.1)

According (3.41) this condition is written in the form

1

3

(
c2 − 2V (x)

)∇ρ =
5

3
ρ∇V (x) (4.2)

Equation (4.2) is integrated in the form

ρ =
ρ0c

5

√
|c2 − 2V (x)|5

(4.3)

Here ρ0 = const.
In the case of spherically symmetric gravitational field of a galaxy one obtains

instead of (4.3)

ρ (r) =
ρ0c

5

√
|c2 − 2V (r)|5

(4.4)

If the gravitational field is not strong and V (r) ¿ c2, the potential V (r) may be
approximated by the expression

V (r) =
GM

r
+

4πG

3
ρ0r

2 (4.5)

Here G is the gravitational constant and M is the mass of the galaxy. The expression
(4.4) takes the form

ρ (r) =
ρ0c

5

√∣∣c2 − 2GM
r
− 8π

3
Gρ0r

2
∣∣5
≈ ρ0

(
1 +

5GM

rc2
+

20πG

3c2
ρ0r

2

)
(4.6)

If ρ0 is large enough and 20πρ0r
2 ≥ 15Mr−1, the density ρ (r) may even increase

with increase of r. At any rate the second term in (4.6) slacks the decrease of density
ρ (r) with increase of r.

It follows from (4.3) that the tachyon gas density is larger in regions with larger
gravitational potential. It means that the tachyon gas is attracted to massive bodies
as usual tardion gas. Besides, the tachyon gas density changes rather slowly with
the change of the gravitational potential, whereas in isothermal atmosphere this
dependence is exponential. Slowly dependence of the tachyon gas density on the
gravitational potential facilitates formation of halo with the almost constant tachyon
gas density.
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Remark. Averaging solutions of the dynamic equations, one supposed, that the
gravitational potential V was constant. In general, one should take into account the
fact that potential V depends on coordinates and, hence, on the 4-vector α. We
hope that our approximation does not change the tachyon gas properties essentially.
Two main properties of the tachyon gas (its strong mobility and very high pressure)
depend slightly on the form of gravitational potential.

5 Dark energy

There is an impression that many cosmological problems are connected with a use
of Riemannian space-time geometry, which is inadequate in application to general
relativity, because the methods of differential geometry describe only a small part
of possible space-time geometries. Observation of accelerated expansion of universe
is explained usually by so-called dark energy. There are different version of the dark
energy nature [14, 15], but all these versions try to explain cosmic antigravitation
which is a reason of accelerated expansion of universe. Conventional general relativ-
ity, based on the Riemannian space-time geometry can explain antigravitation only
by means of negative mass, by negative pressure or by so-called Λ-term, taken with
a proper sign.

The expanded general relativity (EGR) uses more general class of possible space-
time geometries. In the physical geometries of EGR [12, 13] a spherical dust cloud of
radius R and of the mass M cannot collapse and form a black hole. Decreasing radius
R, the parameter ε0 = 2GM/ (c2R) becomes large enough, a region of antigravitation
arises in the center of the cloud. The antigravitation prevents from appearance of
the dark hole. Impossibility of collapse prescribes another scenario for gravitational
contraction of the dust cloud, than the conventional scenario. When the radius
R of the cloud decreases as a result of gravitational contraction, the parameter ε0

increases, and inside the cloud the region of antigravitation appears which prevents
from the further contraction. However, the cloud contraction continue by inertia.
When parameter ε0 becomes large enough, the contraction stops, and the opposite
process begins. The central region of the cloud begin to expand. There are different
stages of expansion. At some stages this expansion may be accelerated. At other
stages the speed of expansion may be decreased. It is possible that different parts of
the central region of the cloud may be at different stages of expansion. It is important
that there is no necessity to invent mythical essences like negative pressure and
quintessence. One needs only to construct a true model of the universe expansion,
based on a correct conception of the space-time geometry.

6 Concluding remarks

Our conclusions depend on existence and properties of tachyons, and these properties
seem to be rather unexpected. This surprise is conditioned by a fundamental change
of approach to geometry. Here one uses the metric approach to geometry, when
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geometry is considered as a science on the shape and dispositions of geometric
objects. At such an approach any geometry is described completely by its world
function and only by its world function. Although nobody deny the metric approach,
the mathematical formalism of differential geometry is based on the idea that any
geometry is a logical construction, and all statements of a geometry can be deduced
from several geometric axioms. The logical structure of a geometry is considered as
a principal property of geometry. So-called symplectic geometry is considered as a
geometry, because its logical structure reminds the logical structure of the Euclidean
geometry, although the symplectic geometry has no relation to a description of
geometric objects.

Mathematical technique adequate to metric approach was unknown. Attempts
of constructing such a technique failed [16, 1]. Formalism of world function was
suggested by J.L.Synge, who used it for description of the Riemannian space-time
geometry [17]. But he failed to obtain coordinateless description of space-time ge-
ometry.

Tachyons and their properties can be effectively described only in the framework
of a discrete space-time geometry. However, the discrete geometry can be con-
structed only in framework of the metric approach and in cannot be constructed by
methods of differential geometry. As a result tachyons appeared outside the scope
of the space-time geometry. One considered tachyons as hypothetical objects, and
their properties were unknown.

Now tachyon gas is a real gas, whose gravitational influence can be identified
with the gravitational influence of the mysterious dark matter. One succeeded to
construct the tachyon gas statics only due to developed coordinateless technique
of metric approach to space-time geometry. The tachyon gas dynamics is not yet
constructed. Possibility of the tachyon existence follows from the mathematical
formalism based on a use of the world function. No new hypotheses on properties
of tachyons were used. Tachyon gas as a candidate for the role of the dark matter
has such a property as a very high pressure, which is necessary for a composition
of large halo. another candidates for the role of dark matter do not possess this
property.
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