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Abstract

In the beginning of the twentieth century the relativity theory had not
been completed in the sense that dynamic equations were relativistic, but
the particle state remained to be nonrelativistic. Consecutive relativistic ap-
proach admits one to construct unified formalism of the particle dynamics
which can be applied for deterministic and stochastic motion of particles.
This formalism admits one to found the quantum mechanics and to explain
quantum phenomena without a use of quantum principles. Refusing from
the constraint on continuity of the space-time geometry and using the metric
approach to geometry, one explains stochastic motion of elementary particles
and constructs the skeleton conception of particle dynamics. The skeleton
conception admits one to investigate the elementary particle structure (but
not only to systematize the elementary particles, ascribing quantum numbers
to them).
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1 Introduction

In the beginning of the twentieth century the relativity theory had not been com-
pleted in the sense that dynamic equations were relativistic, but the description
of the particle state remained to be nonrelativistic. Nonrelativistic concept of the
particle state is a point in the 3-dimensional space or in the phase space. The real
relativistic definition of the particle state looks otherwise.
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Conventionally the special relativity principle is formulated as the Lorentz-invariance
of dynamical equations. On the other hand, a general physical principles can be
hardly formulated as a statement connected with such details of description as a
coordinate transformation. We formulated the relativity principle as follows. The
space-time is described by one space-time structure ST . It means that the space-
time geometry is described by the only quantity: space-time distance ρ, or only
by the world function σ = 1

2
ρ2. In the non-relativistic physics the space-time is

described by means of two independent quantities (structures): spatial distance S
and and temporal interval T . Among three structures: T , S, and ST only two of
them are independent. Such a formulation of the relativity principle is more general,
because it is valid not only for the space-time geometry of Minkowski. It is valid
for any space-time geometry, including a discrete space-time geometry. Besides, this
formulation is coordinateless.

One cannot be sure that the space-time geometry is continuous in microcosm.
Restricting our consideration by the continuous space-time geometries, we are mis-
taken. This mistake is justified by the fact that the formalism of a discrete geometry
has not been developed, and one believes that the space-time geometry cannot be
discrete. In reality, a discrete geometry, as any geometry, is a generalization of the
proper Euclidean geometry GE. But the Euclidean geometry is to be described in
terms of distance ρ and only in terms of distance, because other concepts of GE

contain a reference to continuity of GE, and they cannot be used for a construction
of a discrete geometry.

The simplest discrete space-time geometry Gd is described by the world function

σd ( P,Q) = σM ( P, Q) +
λ2

0

2
sgn (σM ( P, Q)) , ∀P, Q ∈ Ω (1.1)

where Ω is a set of all points of the space-time, σM is the world function of the
Minkowski space-time geometry GM, and λ0 is the elementary length. In the inertial
coordinate system the world function σM has the form

σM (x, x′) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
, gik = diag

(
c2,−1,−1,−1

)
(1.2)

In the discrete space-time geometry a pointlike particle cannot be described by
a world line, because any world line is a limit of the broken line, when lengths of
its links tend to zero. But in the discrete geometry Gd there are no infinitesimal
lengths, because all lengths are longer, than λ0. In Gd a pointlike particle is described
by a world chain (broken line) instead of a smooth world line. Description of a
pointlike particle state by means of the particle position and its momentum becomes
inadequate. The reason lies in the fact that in the continuous (differential) space-
time geometry the particle 4-momentum pk is described by the relation

pk = gkl
dxl

dτ
= gkl lim

dτ→0

xl (τ + dτ)− xl (τ)

dτ
(1.3)

where xl = xl (τ), l = 0, 1, 2, 3 is an equation of the world line. The limit in the
formula (1.3) does not exist in Gd, and the 4-momentum pk is not defined (at any rate
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in such a form). In general, the mathematical formalism of a differential geometry,
based on the infinitesimal calculus (differential dynamic equations), is inadequate
in the discrete space-time geometry, where infinitesimal distances are absent.

In the case of arbitrary space-time geometry the particle state is described by
two space-time points. The two points P,Q determine the vector PQ = {P, Q},
which can be interpreted as the particle momentum. In the case of a discrete space-
time geometry Gd the vector PQ can be also interpreted as a momentum, but its
presentation in the form (1.3) is impossible.

In the arbitrary space-time geometry the pointlike particle is described by a
world chain C

C =
⋃
s

Ps, |PsPs+1| = µ = const, s = ...0, 1, ... (1.4)

Here µ is a geometric mass of the particle (length of the world chain link), which is
connected with the particle mass m by the relation

m = bµ (1.5)

where b is an universal constant.
In Gd only coordinateless description is possible [1], which is produced in terms

and only in terms of the world function σd, or in terms of the space-time distance
ρd, because a use of all geometric concepts of the Riemannian geometry (except for
distance) contains a reference to continuity of the geometry. In the coordinateless
description the scalar product (PQ.RS) of two vectors PQ and RS has the form

(PQ.RS) = σ (P, S) + σ (Q,R)− σ (P, R)− σ (Q,S) (1.6)

and
|PQ|2 = (PQ.PQ) = 2σ (P, Q) (1.7)

The coordinateless definitions of the scalar product (PQ.RS) and of the vector
length |PQ| coincide with their conventional definitions in the proper Euclidean
geometry. They can be used in any space-time geometry G, which is completely
described by its world function σ. Such a space-time geometry will be referred to
as a physical geometry.

Equivalency (PQeqvRS) of two vectors PQ and RS is defined by two coordi-
nateless relations

(PQeqvRS) : (PQ.RS) = |PQ| · |RS| ∧ |PQ|= |RS| (1.8)

The discrete space-time geometry is multivariant in the sense, that there are
many vectors PQ,PQ′,PQ′′,... at the point P which are equivalent to the vector RS
at the point R, but vectors PQ,PQ′,PQ′′,... are not equivalent between themselves.

In the proper Euclidean geometry Gd the equivalence relation (1.8) is single-
variant, and there is only one vector PQ at the point P which is equivalent to the
vector RS at the point R.
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If the world chain (1.4) describes a free particle, its links satisfy the relations

(PsPs+1eqvPs+1Ps+2) , s = ...0, 1, ... (1.9)

These relations are multivariant in Gd. It leads to a wobbling of the world chain.
This wobbling means that the particle motion is stochastic (random). Amplitude
of wobbling is restricted by the elementary length λ0 in Gd for timelike vectors, But
this amplitude is infinite for spacelike vectors. In the geometry of Minkowski GM

the wobbling is absent for timelike vectors (λ0 = 0), and amplitude of this wobbling
is infinite for spacelike vectors.

In the nonrelativistic approximation a statistical description of timelike world
lines in Gd leads to the Schrödinger equation [2], if the elementary length

λ2
0 =

~
bc

(1.10)

where b is the universal constant defined by (1.5). A single particle with the spacelike
world chain (tachyon) cannot be detected, because of the infinite amplitude of its
wobbling. However, gravitational field of the tachyon gas can be detected (dark
matter) [3, 4].

It is very important that the statistical description of wobbling world chains
is produced relativistically, when the pointlike particle state is described by two
points (but not by a point in the phase space). In this case the statistical ensemble
is a dynamic system of the type of a continuous medium, and one may introduce
the wave function as a method of the continuous medium description [5]. In the
nonrelativistic description the particle state is a point in the phase space. In this
case the statistical description is a probabilistic construction describing evolution of
the particle state probability [6, 7, 8].

Let us stress that the statistical ensemble as a dynamic system (but not as
a probabilistic construction) is a result of a correct (relativistic) definition of the
particle state (but not a result of some new hypothesis). Description of the particle
motion by means of the world chain (1.4) is a corollary of the consecutive application
of the relativity principle.

2 Unified formalism of particle dynamics

Foundation of the quantum mechanics on the basis of the stochastic particle dy-
namics is obtained as corollary of unified formalism of the particle dynamics [9].
Stochastic particle Sst is not a dynamic system, and there are no dynamic equa-
tions for Sst. However, statistical ensemble E [Sst], i.e. a set of many independent
stochastic particles Sst, is a dynamic system of the type of the continuous medium.
Deterministic particle Sdet as well as statistical ensemble E [Sdet] are dynamic sys-
tems, and there are dynamic equations for them. At the conventional approach
to the particle dynamics, when the basic element of dynamics is a single particle,
one cannot construct a unified dynamic conception for stochastic and deterministic
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particles, because there are no dynamic equations for a single stochastic particle.
However, after the logical reloading, when the statistical ensemble becomes a ba-
sic object of the particle dynamics, one obtains dynamic equations for statistical
ensemble E [Sst] of stochastic particles Sst and for statistical ensemble E [Sdet] of
deterministic particles Sdet [9].

For instance, the action for the statistical ensemble of stochastic particles Sst has
the form

AE[Sst] [x,u] =

∫ ∫

Vξ

{
m

2
ẋ2 +

m

2
u2 − ~

2
∇u

}
ρ1 (ξ) dtdξ, ẋ ≡dx

dt
(2.1)

The variable x = x (t, ξ) describes the regular component of the particle motion.
The independent variables ξ = {ξ1, ξ2, ξ3} label elements (particles) of the statistical
ensemble E [Sst]. The variable u = u (t,x) describes the mean value of the stochastic
velocity component, ~ is the quantum constant, ρ1 (ξ) is a weight function. One may
set ρ1 = 1. The second term in (2.1) describes the kinetic energy of the stochastic
velocity component. The third term describes interaction between the stochastic
component u (t,x) and the regular component ẋ (t, ξ) of the particle velocity. The
operator

∇ =

{
∂

∂x1
,

∂

∂x2
,

∂

∂x3

}
(2.2)

is defined in the space of coordinates x.
Formally the action (2.1) describes a set of deterministic particles Sd, interact-

ing via the force field u. The particles Sd form a gas (or a fluid), described by
the variables ẋ (t, ξ) = v (t, ξ). Here this description is produced in the Lagrange
representation. Hydrodynamic description is produced in terms of density ρ and
velocity v, where

ρ = ρ1J, J ≡ ∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
, vα =

∂ (xα, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)
, α = 1, 2, 3 (2.3)

Nonrotational flow of this gas is described by the Schrödinger equation [9].
The dynamic equation for the force field u is obtained as a result of variation of

(2.1) with respect to u. It has the form

u = u (t,x) = − ~
2m

∇ ln ρ (2.4)

The vector u describes the mean value of the stochastic velocity component of the
stochastic particle Sst. In the nonrelativistic case the force field u is determined by
its source: the fluid density ρ.

In terms of the wave function the action (2.1) takes the form [9]

A[ψ, ψ∗] =

∫ {
i~
2

(ψ∗∂0ψ − ∂0ψ
∗ · ψ)− ~2

2m
∇ψ∗ ·∇ψ +

~2

8m
ρ∇sα∇sα

}
d4x (2.5)
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where the wave function ψ =
{

ψ1
ψ2

}
has two complex components.

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (2.6)

σα are 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.7)

Dynamic equation, generated by the action (2.5), has the form

i~∂0ψ +
~2

2m
∇2ψ +

~2

8m
∇2sα · (sα − 2σα) ψ − ~2

4m

∇ρ

ρ
∇sασαψ = 0 (2.8)

In the case of one-component wave function ψ, when the flow is nonrotational and
∇sα = 0, the dynamic equation has the form of the Schrödinger equation

i~∂0ψ +
~2

2m
∇2ψ = 0 (2.9)

Thus, the Schrödinger equation is a special case of the dynamic equation, generated
by the action (2.1) or (2.5). Thus, linearity of dynamic equation in terms of the
wave function is a special case of dynamic equation for the statistical ensemble
of stochastic particles, although it is considered usually as a principle of quantum
mechanics.

3 Reason of the elementary particles stochasticity

Stochasticity of elementary particles and wobbling of their world chains are condi-
tioned by discreteness of the space-time geometry, more exactly by its multivariance
[1]. A discrete geometry is constructed as a generalization of the proper Euclidean
geometry GE. But for such a generalization one needs to produce a logical reloading
and to present GE in terms of the world function [10, 11]. A use of the discrete
space-time geometry admits one to formulate the skeleton conception of elementary
particles, where the particle state and all parameters of an elementary particle are
described by the particle skeleton [12]. The skeleton is several space-time points,
connected rigidly. Distances between the skeleton points determine parameters of
the particle. World chain (1.4) with the two-point skeleton describes the simplest
case of elementary particle. In this case there is only one parameter of the skeleton.
It is the length µ = |PsPs+1| of the world chain link. According to (1.5) the particle
mass is a geometrical quantity. In other words, description of a particle motion is
geometrized completely.

A generalization of two-point skeleton of a pointlike particle arises at considera-
tion of the Dirac equation [13, 14, 15]. Analyzing the Dirac equation from the view-
point of quantum mechanics, one meets abstract dynamic variables (γ-matrices),
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whose meaning is unclear. Analyzing the Dirac equation and using the united for-
malism of particle dynamics (without a use of quantum principles), one concludes
that world line of the Dirac particle is a helix with timelike axis. Helical motion of
a free particle is possible, if its skeleton contains three (or more) points [16]. Helical
motion of a particle explains the particle spin and magnetic moment, whereas at the
quantum approach spin and magnetic moment are simply quantum numbers, whose
nature is unknown. Thus, the skeleton conception of elementary particle dynamics
admits one to investigate structure and arrangement of elementary particles.

The skeleton conception is obtained as a direct corollary of physical principles
without a use of artificial principles and hypotheses alike the quantum mechanics
principles. It is the main worth of the skeleton conception. The skeleton concep-
tion is obtained as a result of correction mistakes in the conventional theory: (1)
nonrelativistic concept of the particle state and (2) unfounded restriction by the
continuous space-time geometry. Correction of these mistakes leads to the skeleton
conception without any additional suppositions.

A use of the skeleton conception admits one to explain the dark matter as a
tachyon gas and to explain impossibility of a single tachyon detection [3, 4]. These
phenomena cannot be explained from the point of view of quantum approach.

A use of the logical reloading is followed by essential change of a mathematical
formalism. This change of formalism is perceived hardly by people, using conven-
tional formalism. For instance, the discrete geometry Gd described by the world
function (1.1) is uniform and isotropic. Indeed, the world function σM (1.2) of the
geometry of Minkowski is invariant with respect to Poincare group of transforma-
tions. The world function σd (1.1) is a function of σM. It is also invariant with
respect to Poincare group of transformations. It means that the discrete geometry
(1.1) is uniform and isotropic. This fact contradicts to conventional approach to
the discrete geometry which is considered as a geometry on a lattice. Geometry on
a lattice cannot be uniform and isotropic. Besides, in the discrete geometry (1.1)
there is no definite dimension (maximal number of linear independent vectors). At
the conventional approach to geometry such a situation is impossible, because any
construction of a geometry begins from a fixation of the geometry dimension in the
form of a natural number.
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