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Abstract

It is shown that motion of quantum particles and classical particles can
be described in the framework of the same formalism. Stochasticity of par-
ticle motion depends on the form of the space-time geometry, which is to
be described as a physical geometry, i.e. a geometry obtained as a result of
deformation of the proper Euclidean geometry. The new method of the par-
ticle motion description does not use quantum principles. It admits one to
use the structural approach to theory of elementary particles. The structural
approach admits one to consider structure and arrangement of elementary par-
ticles, that cannot been obtained at conventional approach, using quantum
principles.

Key words: physical geometry; stochastic particles; dynamical disquantization;
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1 Introduction

The most fast progress of mechanics arises, when two different conceptions of me-
chanics are united into one conception. In this paper one unites classical mechanics
and quantum mechanics into united conception of particle dynamics. Such a unifi-
cation admits one to investigate structure and arrangement of elementary particles.
It is impossible in framework of quantum mechanics.

The Aristotelian mechanics contains the Earth mechanics and celestial mechan-
ics [1]. These mechanics contain different objects and different concepts. Sir Isaac
Newton united the two mechanics into the classical mechanics, which contained an-
other concepts and another objects. For instance, in the classical mechanics such
concepts as velocity and acceleration appeared. In Aristotelian mechanics these con-
cepts were absent, because in the Aristotelian mechanics only ratios of like quantities
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were used. For instance, ratio of two lengths, or ratio of two periods of time. Con-
cept of inertia was absent in Aristotelian mechanics. Construction of new concepts
is a very difficult thing. An use of two alternative conceptions lightens this process.

Stochastic (nondeterministic) particles were not known in the time of Newton,
and existence of stochastic particles was not taken into account in classical me-
chanics. Stochastic (quantum) particles were discovered in the beginning of the XX
century One failed to apply classical mechanics for description of quantum parti-
cles. As a result the quantum mechanics has been created for description of quantum
particles. Can the classical mechanics (CM) and the quantum mechanics (QM) be
united into one mechanics? It is a very interesting question. Most researcher believe,
that such a unification is impossible.

Unification of quantum mechanics (QM) and classical mechanics (CM) is pro-
duced on the basis of inverse problem of Madelung [2], who showed,that Schrödinger
equation can be presented as gas dynamic equation, describing some nonrotational
flow of gas. The inverse problem cannot be solved in XX century, because one did
not know that wave function is a natural attribute of gas dynamics [3]

Let us consider a gas, whose molecules interact via classical force field κl, l =
0, 1, 2, 3 which changes the particle mass m

m2 → M2 = m2 +
~2

c2

(
κlκ

l + ∂lκ
l
)

(1.1)

where ~ is the quantum constant. Variational principle for such a gas has the form

A [x, κ] =

∫

ξ0

∫

Vξ

(
−mcK

√
glkẋlẋk − e

c
Alẋ

l
)

d4ξ, ẋi =
∂xi

∂ξ0

(1.2)

K =
M

m
=

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, ∂l ≡ ∂

∂xl
(1.3)

where κl, l = 0, 1, 2, 3 is a classical force field. Dynamic equations for irrotational
flow of this gas is the Klein-Gordon equation [4]

(
i~∂k − e

c
Ak

)(
i~∂k − e

c
Ak

)
ψ −m2c2ψ = 0 (1.4)

Thus, classical force field κl = ∂lκ is responsible for quantum effects and pair pro-
duction It means that quantum mechanics can be founded by means of classical gas
dynamics.

However, to show, that QM and CM are different branches of the same concep-
tion, it is necessary to show, that dynamic equations of QM and those of CM are
defined in the same way. But usually a classical particle is described as a single
particle, whereas a quantum particle is a stochastic particle. It is described as a sta-
tistical ensemble of stochastic particles. A stochastic particle cannot be described
as a single particle.

Quantum mechanics and classical mechanics can be united on the basis of logical
reloading [6]. The logical reloading means that basic objects of classical dynamics
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(a single dynamic system S) is substituted by statistical ensemble E [S] of single
dynamic systems S. Such a substitution does not change classical dynamics, because
one can obtain dynamic equations for E [S] from dynamic equations for single S and
vice versa. For a stochastic system one can obtain dynamic equations for statistical
ensemble E [Sst] of stochastic systems Sst. However, dynamic equations for a single
stochastic system Sst cannot be obtained. Such a unification on the basis of logical
reloading is possible, but it is less effective, than unification on the basis of physical
geometry of space-time. Mathematical formalism on the basis of physical geometry
admits one to investigate structure of elementary particles.

World lines of quantum particles are stochastic. They wobble. This wobbling can
be described in the discrete space-time geometry. The discrete space-time geometry
is such a geometry, where there is a minimal length λ0. This condition can be
written in the form

|ρ (P,Q)| /∈ (0, λ0) , ∀P, Q ∈ Ω (1.5)

where Ω is the set of points, where space-time geometry is given. ρ (P, Q) is the
distance between points P and Q. Usually one considers condition (1.5) as a con-
straint on Ω. Remaining only countable number of points in Ω, one obtains so called
geometry on a lattice. It is impossible to work with the space-time geometry, which
is a geometry on a lattice. For instance, one cannot define world line of a particle
in the space-time geometry given on a lattice.

It is more effective to consider condition (1.5) as a constraint on the metric ρ
or on the world function σ = 1

2
ρ2. The world function σd of the simplest discrete

geometry Gd is described by the relation

σd (P, Q) = σM (P,Q) +
λ2

0

2
sgn (σM (P, Q)) , ∀P, Q ∈ Ω = ΩM (1.6)

where σM is world function of the geometry of Minkowski GM. ΩM is the set of
points, where GM is given. It easy to verify, that ρd =

√
2σd satisfies the relation

(1.5). World line of a free particle in Gd wobbles [5]. It means that a discreteness
of the space-time geometry may be a reason of the world lines wobbling. Maybe,
one succeeds to replace the quantum wobbling of world lines by a use of a discrete
space-time geometry. Then one succeeds to unite classical mechanics and quantum
mechanics in united conception of particle dynamics.

If such a unification is possible, then deterministic particles and quantum par-
ticles will be described by the same mathematical formalism. But, in the con-
ventional dynamics the dynamic equations describe any individual deterministic
particle, whereas they describe some statistical average characteristics of quantum
particles. There are conceptual mistakes in foundations of contemporary physics
[7]. One of such mistakes consists in the statement, that space-time geometry is a
Riemannian one. In reality the real space-time geometry is not a Riemannian geom-
etry. General type of space-time geometry is a physical geometry, obtained as the
Euclidean geometry deformation. In particular, the discrete geometry is a special
type of a physical geometry. World line of a particle in physical space-time geometry
is described as a broken line Lbr with vortices Ps, s = ...0, 1... For free particle the
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adjacent vectors PsPs+1 and Ps+1Ps+2 are equal. Then dynamic equations look as
follows:

σ (Ps, Ps+1) = σ (Ps+1, Ps+2) , s = ...− 1, 0, 1, ...

(PsPs+1.Ps+1Ps+2) = 2
√

σ (Ps, Ps+1) σ (Ps+1, Ps+2), s = ...− 1, 0, 1, ...

Here (PsPs+1.Ps+1Ps+2) is the scalar product of two vectors.

(PsPs+1.Ps+1Ps+2) = σ (Ps, Ps+2) + σ (Ps+1, Ps+1)− σ (Ps, Ps+1)− σ (Ps+1, Ps+2)

In general, two dynamic equations are insufficient for unique determination of four
dynamic variables (t, x, y, z). As a result the broken line Lbr appears to be stochastic,
generally speaking. But in the geometry of Minkowski the timelike world line Lbr

appears to be deterministic. As far as deterministic world lines and stochastic
world lines can be described by the same dynamic formalism, it means that classical
mechanics and quantum mechanics can be united into one mechanics.

Dynamic equations describing a single quantum particle must have many solu-
tions, in order that world line of a quantum particle wobbles. Statistical averaging
over this wobbling must lead to conventional quantum dynamic equations. Unfortu-
nately, we cannot obtain description of a single quantum particle. Why? The answer
is rather unexpected. We cannot obtain dynamic equation for a single stochastic
particle, because we know space-time geometry incomplete (we use only Riemannian
space-time geometry instead of a physical geometry.)

A negative relation of mathematicians to the physical geometry hinders to de-
velopment and application of physical geometry. When mathematicians had under-
stood, that the physical geometry is not a logical construction, because the equiva-
lence relation is intransitive, they stated, that such a geometry cannot exist, because
a geometry is a logical construction with a necessity. When I submitted a report
on physical geometry to a seminar in Steklov Mathematical Institute, secretary of
the seminar said me: ”How strange geometry. There are no theorems in it. Only
definitions.” He was right. In the physical geometry there are no theorems. All
definitions are taken from the proper Euclidean geometry, where they are obtained
by means of Euclidean theorems. At deformation of Euclidean geometry, which is
a logical construction, logical connections between different geometrical statements
were violated. It is possible that the physical geometry is not interesting for math-
ematicians, because it does not contain theorems. (Proves of theorems is a favorite
business of mathematicians.)

A use of the physical space-time geometry admits one to use a structural ap-
proach to the elementary particle theory [8, 9, 10], when one describes structure
and arrangement of elementary particles. Usually one uses experimentally analytical
approach, when any elementary particle is considered as a pointlike physical object,
whose properties are described by means of a set of quantum numbers assigned to
the elementary particle. These quantum numbers were obtained from experiments.
Mathematical formalism of quantum theory does not admit to consider arrangement
of an elementary particle. When one discover experimentally a complex structure
of nucleons, quarks were considered as single particles, which cannot leave nucleon,
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although it would be more reasonable to consider quarks as elements of the nucleon
structure.

The same picture we had at investigations of chemical elements. In the nine-
teenth century only experimentally logical approach existed, when atom was con-
sidered as an object without structure. Its properties were described by a set of
numbers, obtained from experiments. Chemical elements were classified according
to these numbers. They formed periodic system of chemical elements. Nature of
this periodical system became to be clear only in twentieth century, when arrange-
ment of atoms of chemical elements became clear. Arrangement of atoms had been
established on the basis of quantum theory. But the quantum theory is insufficient
to establish arrangement of elementary particles.

Now we find ourselves on that stage, when we have a classification of elementary
particles (standard model), which are considered as objects without a structure.
The structural approach to elementary particles is not yet sufficiently developed.

2 Space-time geometry

It is used to think, that the most general type of space-time geometry is a Rie-
mannian geometry. It is not valid. The most general type of space-time geometry
is the physical geometry, i.e. the geometry described completely in terms of world
function. The physical geometry is obtained from the proper Euclidean geometry
by means of a deformation [11], [12], [13], [15], [16], [17].

Euclidean geometry GE can be described completely in terms of metric ρ and
only in terms of metric. It is convenient to use world function σ = 1

2
ρ2 instead of

the metric ρ. All objects and statements of GE are expressed via world function σE

of GE. Substituting σE in all statements of GE by the world function σ of a physical
geometry G, one obtains all statements of G, i.e. the geometry G. Operation of
substitution σE by σ is a deformation of GE. Such a deformation of GE is very simple.
It does not need a consideration of the basic axioms compatibility, because GE is
used in monistic representation, when there is essentially only one quantity, which
defines GE.

The physical geometry can describe discrete geometry and geometry, which is not
continuous. There is no necessity to consider topology as a special science, because
all topological properties are included in the form of world function. For instance, if
five dimensional space-time of Kaluza-Klein is considered as a Riemannian geometry,
one obtains,that electric charge q = ne0, where e0 is the elementary charge, and n
is an integer number. If the space-time of Kaluza-Klein is considered as a physical
geometry [18], the electric charge q = ±e0, or q = 0 . Experiment shows, that
electric charge of elementary particle satisfies the condition |q| ≤ e0. In other words,
space-time geometry of Kaluza-Klein should be described by physical geometry.

A set of physical geometries is more powerful, than a set of Riemannian geome-
tries. Let us consider uniform isotropic discrete space-time geometry Gd [5]. It is
not a Riemannian geometry. It is a physical geometry Gd, described by the world
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function σd

σd (P, Q) = σM (P,Q) +
λ2

0

2
sgn (σM (P, Q)) , ∀P, Q ∈ Ω = ΩM (2.1)

where Ω is the set of points, where the geometry is given. λ0 =const is a minimal
length in Gd. σM is a world function of geometry of Minkowski GM. The set Ω
coincides with the set ΩM, where the Minkowski geometry GM is given. It easy to
verify, that σd satisfies the relation (1.5)

|ρd(P,Q)| /∈ (0, λ0) , ∀P,Q ∈ ΩM, ρd =
√

2σd (2.2)

i.e. λ0 is the minimal length in Gd.
The discrete geometry Gd is uniform and isotropic, because σd is a function of

σM, as one can see from (2.1). However, there are no smooth world lines of particles
in Gd, because of (2.2). In Gd world line of a particle is given as a broken line Lbr,
consisting of rectilinear segments Td[s.s+1]

Lbr =
⋃
s

Td[s.s+1], (2.3)

where Td[s.s+1] is a segment of straight line in Gd

Td[s.s+1] =
{

R|
√

2σd (Ps, Ps+1) =
√

2σd (Ps, R) +
√

2σd (R,Ps+1)
}

(2.4)

Length
∣∣Td[s.s+1]

∣∣ of all segments is the same

∣∣Td[s.s+1]

∣∣ = µ, s = ...0, 1, .. (2.5)

It is easy to verify that in the proper Euclidean geometry GE a rectilinear segment
TE[s.s+1] between the points Ps and Ps+1 is described by (2.4) with σd replaced by
Euclidean world function σE. Segment Td[s.s+1] in Gd is expressed via σd in the same
way, as segment TE[s.s+1] in GE is expressed via σE. It is a reason, why (2.4) is a
rectilinear segment in Gd..

For a free particle the adjacent vectors PsPs+1 and Ps+1Ps+2, are equal.
(PsPs+1eqvPs+1Ps+2). It means that

σ (Ps, Ps+1) = σ (Ps+1, Ps+2) , s = ...− 1, 0, 1, ... (2.6)

(PsPs+1.Ps+1Ps+2) = 2
√

σ (Ps, Ps+1) σ (Ps+1, Ps+2), s = ...− 1, 0, 1, ... (2.7)

where (PsPs+1.Ps+1Ps+2) is the scalar product of vectors PsPs+1 and Ps+1Ps+2

(PsPs+1.Ps+1Ps+2) = σ (Ps, Ps+2) + σ (Ps+1, Ps+1)− σ (Ps, Ps+1)− σ (Ps+1, Ps+2)
(2.8)

The scalar product in Gd has the form (2.8), because the scalar product (PsPs+1.Ps+1Ps+2)
in GE has the same form (2.8) with σ substituted by σE.
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Equations (2.6), (2.7) are dynamical equations for a free particle. They are to
be fulfilled at any point Ps+1. In general, in equations (2.6), (2.7) in Gd, where
σ = σd, have many solutions, because the number of dynamic variables is equal to
4, whereas the number of dynamic equations is equal to 2. Solutions in different
points Ps+1 are independent. As a result the shape of Lbr will be indefinite in Gd.
The world line of free particle will wobble [5].

However, in geometry of Minkowski, where σ = σM equations (2.6), (2.7) have
unique solution [5], although the number of dynamical variables is larger, than the
number of dynamic equations. In this case a world line of free particle is a straight
line, which does not wobble.

Thus, if one uses the physical space-time geometry, the dynamic equations (2.6),
(2.7), which can be written also in the form

σ (Ps, Ps+1) = σ (Ps+1, Ps+2) , s = ...− 1, 0, 1, ... (2.9)

σ (Ps, Ps+2) = 4σ (Ps, Ps+1) , s = ...− 1, 0, 1, ... (2.10)

may describe both deterministic and stochastic world lines of a free particle. Result
depends on the space-time geometry.

It means that there exists such a presentation of dynamic equations, which is the
same for deterministic and stochastic (quantum) particles. It may point out that
classical mechanics and quantum mechanics can be united in one mechanics with
mathematical formalism which is common for classical mechanics and for quantum
mechanics.

Additional argument in behalf of physical space-time geometry is the fact, that
in this case the relativity principle can be formulated in the coordinate free form.
Indeed, it is rather strange, when important physical principle is formulated by
means of a reference to transformations of coordinate system [20]

In the physical geometry the relativity principle is formulated as follows. Space-
time geometry is described by means of unique space-time structure (world function).
In the nonrelativistic case the space-time is described by two space-time structures:
absolute space distance S (P, Q) and absolute time interval T (P,Q). Besides, the
coordinate free formulation is valid in any space-time, but not only in the space-time
of Minkowski, as it is used in usual formulation.

3 Methods of description

It seems to be rather unusual to describe particles by means of dynamic equations,
which have no unique solution. Stochastic particles, which are described by equa-
tions (2.9), (2.10) are described usually by gas dynamic equations. These gas dy-
namic equations can be obtained from equations (2.9), (2.10) by means of statistical
averaging. We shall refer to description in form of dynamic equations (2.9), (2.10)
as a basic representation. Description in terms of classical gas dynamic equations
will be referred to as a gas dynamic representation.
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Any gas dynamic equations can be described in terms of the wave function [3].
If the obtained equation is linear in terms of wave function, such a representation
is qualified as quantum representation. In gas dynamics the wave function is a
natural attribute of gas dynamics, but in quantum mechanics the wave function
is an axiomatic object. Its nature in quantum mechanics is unknown. Linearity of
dynamic equations in terms of the wave function is considered as a mark of quantum
mechanics. Linearity of quantum mechanics is considered as a principle of quantum
mechanics.

If the gas molecules interact via some force field κl, and the action has the form
[4]

A [x, κ] =

∫

ξ0

∫

Vξ

(
−mcK

√
glkẋlẋk − e

c
Alẋ

l
)

d4ξ, ẋi =
∂xi

∂ξ0

(3.1)

K =
M

m
=

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, ∂l ≡ ∂

∂xl
(3.2)

then dynamic equations in terms of the wave function are linear. Irrotational flows
of such a gas coincide with the Klein-Gordon equation. Thus, the gas dynamic
description may be treated as a quantum description.

Describing gas dynamical equation in terms of the wave function [3], one can
obtain quantum description in terms of the wave function. Although obtaining of
gas dynamic description from quantum description was known in the beginning of
XX century [2], derivation of quantum description from gas dynamic description
appears to be known only recently ([4]). Apparently, the problem of deriving the
quantum description from the gas dynamic description was connected with inapti-
tude of introduction of the wave function into gas dynamics.

Any gas dynamic equations can be written in terms of the wave function. But
equations in terms of a wave function are linear only for quantum particles. Although
nature of wave function in gas dynamics is quite clear, in the quantum mechanics
the nature of a wave function is not clear. Instead of nature of the wave function
one consider linearity of quantum mechanics.

In quantum mechanics the elementary particles are considered as pointlike ob-
jects equipped by a series of quantum numbers. On the other side classical particles
corresponding to elementary particles appear sometimes to be a composite particles.
Let the Dirac particle SD, satisfy the Dirac equation, and the Klein-Gordon parti-
cle SKG, satisfy the Klein-Gordon equation. The classical Dirac particle SDcl which
associates with SD, has another structure and number of freedom degrees, than the
classical Klein-Gordon particle SKGcl, which associates with SKG.

Basic representation is more informative, than gas dynamic representation and
quantum representation. Basic representation cannot be obtained from quantum
representation. Basic representation has more important properties. It can de-
scribe structure of elementary particle. The world line (2.3) may consist not only
of rectilinear segments. It may consist of more complicated geometrical objects, for
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instance, from skeletons S(n) = {P n
0 , P n

1 ...P n
n }

Lbr =
⋃
s

S(n)
s (3.3)

All skeletons S(n)
s are supposed to be equal

S(n)
s = S(n)

s+1, s = ...0, 1, ... (3.4)

Equality of skeletons S(n)
s and S(n)

s+1 means that vectors (Pn
i )s (Pn

k)s and (Pn
i )s+1 (Pn

k)s+1are
equal

(Pn
i )s (Pn

k)s = (Pn
i )s+1 (Pn

k)s+1 , i, k = 0, 1, ..n (3.5)

Besides, adjacent skeletons are linked by relation

(P n
n )s = (P n

0 )s+1 , s = ...0, 1, ... (3.6)

Skeleton S(n) describes position of a physical object. It does not depend on
the shape of the physical object [8] sec 10. Using description (3.3) one can describe
motion of physical objects which are not pointlike. Relation (3.3) together with (3.4)

describes free motion of skeleton in the direction of the vector
(
P

(n)
n

)
s

(
P

(n)
0

)
s+1

. As

a result (3.3) describes a motion of a complicated physical object [10]. It admits one
to describe structure of elementary particles. Conventional quantum mechanics does
not admit to describe structure of elementary particles. Any elementary particle is
considered as a pointlike object equipped by quantum numbers. Different elementary
particles have different sets of quantum numbers, but all they are pointlike. When
one discovered experimentally complex structure of nucleons, it has been decided
that nucleons consist of quarks, which cannot exist outside nucleon. It would be
more reasonable to consider quarks as elements of nucleon structure, but quantum
theory does not admit this. It admits one to consider quarks only as single particles.

Numerical simulation showed, that the basic representation of a particle, de-
scribed by the Dirac equation, contains three-point skeleton S(3) = (P0, P1, P2). In
the classical approximation the classical Dirac particle is a spiral world line with
timelike axis.

To obtain classical approximation one does not use cut-off of quantum interac-
tion (for instance, ~ = 0). Instead one uses quasi-balanced state, which cut-off all
stochastic interactions, but not only quantum ones. For instance, a mean velocity
of a Brownian particle is described by the relation

v = −∇f (ρ) (3.7)

This velocity vanishes, if f (ρ)=const, and the state of Brownian particles is bal-
anced. A balanced state can be created in dynamics of stochastic particles, when
stochasticity does not influence on the mean motion of particles. Such a situation
will be referred to as dynamic disquantization [21], [22], [14], [23].

9



Statistical ensemble E [Sst] of stochastic systems Sst is a dynamical system. It
is described by a system of partial differential equations. In the balanced state the

terms containing transversal derivatives ∂i
tr = ∂l − jljk

jsjs ∂k are small, because they

describe stochastic component of motion. Here jk describes 4-current of particles.

If in the dynamic equations one substitutes all derivatives ∂l by jljk

jsjs ∂k,

∂l → jljk

jsjs
∂k (3.8)

then all transversal derivatives ∂i
tr will be suppressed, and system of partial equations

turns into a system of ordinary equations, because all derivatives ∂k will be along
jk. This system of ordinary equations describes a statistical ensemble E [Sdc] of
deterministic systems Sdc. Any system Sdc has finite number of freedom degrees.

In the case of Schrödinger equation the system Sdc has 6 degrees of freedom.
In the case of Dirac equation it has 10 degrees of freedom. Quantum constant may
remain to be a parameter of the system of ordinary equations. The deterministic dy-
namic system Sdc associates with quasi-classical approximation of stochastic system
Sst. This procedure (dynamic disquantization) is purely dynamic procedure, which
removes stochasticity of any nature, but not only quantum stochasticity.

4 Pecularities of skeleton approach

The new approach arose as a result of strategical conception, when many problems
of contemporary physics are considered as results of mistakes in foundation. The
main mistake was consideration of the space-time geometry as a kind of Riemannian
geometry. The Riemannian geometry is not a general type of the space-time geom-
etry. The space-time geometry is a kind of physical geometry, which is not a logical
construction, generally speaking. In physical geometry the equivalence relation is
intransitive in general. In particular, it means, that if

AB = CD ∧CD = EF (4.1)

then relation
AB 6= EF (4.2)

may take place. This property of the space-time geometry admits that world lines
of free particles may wobble. In any logical construction the equivalence relation
is transitive, and situation (4.1), (4.2) is impossible. Indeed, if in some conception
the relations (4.1), (4.2) take place, one cannot build any logical conclusions in this
conception. Most mathematicians consider such a situation as illegal, because one
cannot produce logical deductions in such a conception. Such an approach is natural,
because a possibility of logical construction is important for mathematicians. The
form of conception, but not the objects, which are described by the conception, is
important for mathematicians.

10



Result of such an approach is a such one, that quantum phenomena are described
by quantum mechanics, which is an additional conception to classical mechanics. A
possible unification of classical mechanics and quantum mechanics in the frame-
work of physical space-time geometry leads to another approach to the theory of
elementary particles [24] [10].

It is important to compare the skeleton conception with the conventional theory
of elementary particles. Interrelation between the two approaches reminds interrela-
tion between the chemistry and physics of chemical elements. Chemistry investigates
properties and reactions of different chemical elements, basing on experimental data
without considerations of structure and arrangement of their atoms. Result of these
considerations is the periodic system of chemical elements. On the contrary, physics
is interested in arrangement and structure of atoms of chemical elements. As a re-
sult chemistry and physics investigate atoms from different points of view. The two
approaches match well.

In the case of elementary particles the conventional approach is an analog of
the chemical approach, because it is not interested in structure and arrangement of
elementary particles. Result of this approach is the standard model of elementary
particles, which is an analog of the periodic system of chemical elements. On the
contrary, the skeleton conception is an analog of physical approach to chemical ele-
ments, because it is interested in structure and arrangement of elementary particles.
Conventional approach to elementary particles and skeleton approach match well,
considering elementary particles from different points of view.

5 Arguments in behalf of skeleton approach

The transition from dynamic equations (2.9), (2.10) for a pointlike particle to equa-
tions (3.3) for a volume particle is rather unexpected. But position of any volume
physical body is described by its skeleton, and dynamic equations for motion of the
skeleton are dynamic equations for motion of a physical body. One can test this fact
on the example of a particle described by the Dirac equation [25].

According to [26, 27] γ-matrices in the Dirac equation can be considered as
hypercomplex numbers. Let us use designations [25]

γ5 = γ0123 ≡ γ0γ1γ2γ3, (5.1)

σ = {σ1, σ2, σ3, } = {−iγ2γ3,−iγ3γ1,−iγ1γ2} (5.2)

where γk are 4× 4 Dirac matrices, satisfying the commutation relations

γiγk + γkγi = 2gik (5.3)

where gik is the metric tensor. Let us make the change of variables

ψ = Aeiϕ+ 1
2
γ5κ exp

(
− i

2
γ5ση

)
exp

(
iπ

2
σn

)
Π (5.4)
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ψ∗ = AΠ exp

(
−iπ

2
σn

)
exp

(
− i

2
γ5ση

)
e−iϕ− 1

2
γ5κ (5.5)

where (*) means the Hermitian conjugation, and

Π =
1

4
(1 + γ0)(1 + zσ), z = {zα} = const, α = 1, 2, 3; z2 = 1 (5.6)

is a zero divisor. The quantities A, κ, ϕ, η = {ηα}, n = {nα}, α = 1, 2, 3, n2 = 1
are eight real parameters, determining the wave function ψ. These parameters may
be considered as new dependent variables, describing the state of dynamic system
SD. The quantity ϕ is a scalar, and κ is a pseudoscalar. Six remaining variables A,
η = {ηα}, n = {nα}, α = 1, 2, 3, n2 = 1 can be expressed through the flux 4-vector
jl = ψ̄γlψ and spin 4-pseudovector

Sl = iψ̄γ5γ
lψ, l = 0, 1, 2, 3 (5.7)

Because of two identities

SlSl ≡ −jljl, jlSl ≡ 0. (5.8)

there are only six independent components among eight components of quantities
jl, and Sl.

Dynamic equations in terms of dynamic variables A, κ, ϕ, η = {ηα}, n = {nα},
α = 1, 2, 3, n2 = 1 do not contain γ-matrices. Producing dynamic disquantization
[28], one obtains dynamic equations for statistical ensemble E [SDcl] of deterministic
dynamic systems SDcl. Action for SDcl has the form

SDcl : ADcl[x, ξ] =

∫ {
−κ0m

√
ẋiẋi + ~

(ξ̇ × ξ)z

2(1 + ξz)
+ ~

(ẋ× ẍ)ξ

2
√

ẋsẋs(
√

ẋsẋs + ẋ0)

}
dτ 0

(5.9)
Here xk = xk (τ 0, ξ) and z, z2 = 1 is a constant 3-vector, κ0 = ±1. The dynamic
system SDcl will be referred to as classical Dirac particle. SDcl associates with the
Dirac particle SD. Dynamic equations for SDcl can be considered as classical ap-
proximation of SD. SDcl can be interpreted as a rotator, consisting of two particles.
World line of the particle SDcl is a helix with timelike axis. The first term in (5.9)
describes progressive motion, whereas two others describe rotational part of motion.

Note, that two last terms of (5.9), describing rotation, are nonrelativistic, al-
though dynamic disquantization (3.8), acting on relativistic dynamic system, re-
mains it to be relativistic. In the given case appearance of nonrelativistic terms is
connected with elimination of γ-matrices [29]. Nonrelativistic terms admit rotation
with the velocity larger, than the speed of the light. Circular rotation in SDcl asso-
ciates with spin and magnetic moment of Dirac particle SD. The quantum constant
remains in the action (5.9) also.

Investigation shows, that the Dirac equation can be presented in the form of
(3.3) for three-point skeleton [30]. One vector of the skeleton is spacelike. Spacelike
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vectors admit large wobbling, and this vector is responsible for rotations. Two
other vectors are timelike. They provide stabilization of the skeleton world line.
Calculation in [30] was produced for a model of the space-time (not for real space-
time). Nevertheless calculation demonstrates real properties of three-point skeleton
and its role in description of Dirac particle.

6 Concluding remarks

The new approach to elementary particle theory, which admits one to describe ar-
rangement of elementary particles, has been presented. One should stress, that
unification of classical mechanics and quantum mechanics and the new approach to
elementary particles is a result of correction of mistakes in our understanding of the
space-time geometry, but not a result of some new ideas. Such a way seems to be
more reliable. The way to unification of classical mechanics and quantum mechanics
has been presented in the paper. It remains only to determine world function of real
space-time geometry in microworld, which could generate the quantum stochastic-
ity. I hope, that this problem will be solved, because the set of physical geometries
is very powerful, and practically each physical space-time geometry can generate
stochasticity.
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