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Abstract
The tachyon model of neutrino is constructed, basing on the statement

that quantum description is a statistical description of stochastically moving
particles. Besides, the tachyon model contains two conceptual points: (1)
universal formalism of particle dynamics, describing uniformly all particles:
deterministic, stochastic and quantum, (2) discrete space-time geometry and
skeleton conception of particle dynamics. The universal formalism is a result
of a logical reloading, when the statistical ensemble becomes to be the basic
object of particle dynamics instead of a single particle. Such a reloading
admits one to describe uniformly the quantum, stochastic and deterministic
particles in terms of a statistical ensemble without a reference to principles
of quantum mechanics. Besides, one uses a relativistic state of a particle,
when the state is described by the particle skeleton (several space-time points)
instead of the point in the phase space, what is nonrelativistic concept of
the particle state. Representing the Dirac equation in terms of the statistical
ensemble, one concludes that in the deterministic approximation the world line
of the Dirac particle may be a spacelike helix with timelike axis. The rotational
component of the relativistic Dirac particle is described nonrelativistically. It
shows that the world line may be spacelike, and the Dirac particle may be
a tachyon. Neutrino is a Dirac particle, and it is a tachyon. Free quantum
particles appear to move stochastically, and this bring up the question, what
is the reason of stochastic motion of free quantum particles. It appears, that
the discrete space-time geometry is a multivariant geometry. It is a reason of
stochastic particle motion. If the elementary length λ0 of the discrete space-
time geometry is connected with the quantum constant ~ by the relation
λ2

0 = ~/bc, where b is some universal constant, then statistical description of
the free particle motion coincides with the quantum description in terms of
the Schrödinger equation.
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1 Introduction

The particles moving with the velocity, which is greater than the speed of the light,
are called tachyons [1]-[4]. We shall use this name for particle, whose world line
is spacelike. Both definitions mean the same, if the world line is smooth, and one
can define a derivative along the world line. This derivative is known as a velocity.
We shall show that the world line of tachyons is not smooth. This property differ
tachyons from tardions which are particles moving with velocity less, than the speed
of the light, and the world line of a tardion is smooth.

Neutrino is a tachyon, whose world line is a spacelike helix with timelike axis.
However, most physicists believe that tachyons do not exist, in particular, tachyons
with helical world line do not exist. Our model of neutrino is based on the skeleton
conception of elementary particles [5]. The skeleton conception is a new conception
based on such unusual fundamentals as (1) refuse from quantum principles, which
are replaced by a discrete space-time geometry, (2) description of the particle state
by its skeleton (several space-time points) instead of a point in the phase space of
coordinates and momenta.

It is useful to describe characteristic features of these fundamentals, using method
of the book by Lee Smolin [6]. It is an excellent book, where all problems of the
elementary particle theory are presented without any formula. Lee Smolin distin-
guishes principle theories and constructive theories. The principle theory is to be
valid for all physical phenomena, whereas the constructive theory is valid only for
some class of physical phenomena. The constructive theory is created on the basis
of some experimental data, and it is valid for the class of the physical phenomena
close to phenomena verified by experiment. For instance, the special relativity and
the general relativity are principle theories. The elementary particle theory is a
constructive theory.

Lee Smolin formulated five unsolved important problems of contemporary theo-
retical physics:

Problem 1: Unification of general relativity and quantum theory (quantum grav-
itation)

Problem 2: Rationale of quantum mechanics.
Problem 3: Unification of particles and fields.
Problem 4: Explanation how to choose free constants in the standard model of

elementary particle physics.
Problem 5: Explanation of the phenomenon of dark matter and dark energy.
Besides, Lee Smolin describes new and old fundamental conceptions as unifi-

cations. For instance, he formulates the special relativity theory as an unification
of space and time. The inertia law is formulated as an unification of the rest and
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motion. The general relativity is formulated as unification of space-time and gravi-
tation.

The tachyon model of neutrino is constructed on the basis of a principle the-
ory (skeleton conception). This principle theory is formulated on the basis of two
unifications:

1. Unification of the deterministic particle motion with the stochastic particle
motion

2. Unification of the continuous space-time geometry with the discrete space-
time geometry.

The two unifications concern space-time geometry and the particle dynamics.
These disciplines relate to all physical phenomena. The two unifications are more
fundamental, than problems formulated by Lee Smolin. They solve four of five
Smolin’s problems (the fourth problem is not solved, because it a specific problem
of the standard model of elementary particles). The first problem (the quantum
gravitation) is solved in the sense, that the gravitation field does not need to be
quantized, as well as other geometrical fields.

Both unifications are produced on the basis of a logical reloading, which means
a change of basic statements of a theory.

In the unification of the deterministic particle motion with the stochastic particle
motion it means as follows. A deterministic particle is a dynamical system Sd,
and one can write dynamic equations for the deterministic particle Sd. Stochastic
particle Sst is not a dynamic system. It is a stochastic system Sst, and there are no
dynamic equations for a single stochastic particle Sst. One can describe only mean
motion of a stochastic particle Sst. To describe the mean motion, one considers
a statistical ensemble E [Sst] of stochastic particles Sst. The statistical ensemble
E [Sst] is a dynamic system of the type of continuous medium, and one can write
dynamic equations for E [Sst]. Statistical ensemble E [Sd] of deterministic dynamic
systems Sd can be constructed also. Ensemble E [Sd] is also a dynamic system of
the type of continuous medium. Any statistical ensemble (E [Sst] and E [Sd]) may
be considered as some fluid (continuous medium). In the Lagrange representation
dynamic equations for E [Sd] coincide with dynamic equations for Sd. Only the
number of dynamic equations is different. If the number of degrees of freedom for
Sd is equal to n, the number of the freedom degrees for E [Sd] is equal to nN , where
N is the number of dynamic system Sd in E [Sd], N →∞.

If the dynamical equations for Sd are known, the dynamical equations for E [Sd]
are also known. Vice versa, if dynamic equations for E [Sd] are known, one can
write dynamic equations for a single particle Sd. In other words, it is not essential,
what is the basic object (E [Sd] or Sd) at description of the deterministic particle
Sd. However, at description of stochastic particle Sst it is essential, because there
are dynamic equations for E [Sst], whereas there are no dynamic equations for Sst.
If the statistical ensemble is a basic object of the particle dynamics, then dynamic
equations exist for all sorts of basic objects E [Sd] and E [Sst]. The difference between
Sd and Sst consists in the circumstance, that dynamic equations for Sd can be
obtained from dynamic equations for E [Sd], but dynamic equations for Sst cannot
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be obtained from dynamic equations for E [Sst]. How it may be possible, will be
shown later in a simple example.

The logical reloading leads to creation of united formalism for description of
deterministic, stochastic and quantum particles in terms of the statistical ensemble
[7]. It appears, that quantum particles are stochastic particles, described in terms of
the statistical ensemble. The wave function ψ appears at such a description, because
it is simply a way of the ideal fluid description [8]. The wave function ψ is used,
because describing statistical ensemble of quantum particles, the internal energy of
the ”quantum fluid” appears to be such one, that dynamic equations in terms of
ψ are linear (Schrödinger equation) for non-rotational flow of the ”quantum fluid”,
describing this ensemble.

Thus, one does not need quantum principles, if the basic object of particle dy-
namics is a statistical ensemble. Quantum particles are simply stochastic particles.
It appears that the quantum principles are not fundamental principles of nature,
and there is no necessity to quantize the gravitational field, especially if one takes
into account that the dynamic equations of the gravitational field do not contain
the quantum constant.

Explanation of quantum theory as a statistical description of stochastic particles
brings up the question: ”Why free elementary particles move stochastically?” The
answer to this question is as follows. The real space-time geometry is discrete. There
is a minimal space-time distance between the events (points) of space-time. This
distance is called elementary length λ0. Condition of the space-time discreteness is
written in the form

|ρ (P,Q)| /∈ (0, λ0) , ∀P, Q ∈ Ω (1.1)

where Ω is the set of the space-time points and ρ (P, Q) is the space-time interval
between points P and Q. Note that ρ (P, Q) = 0 is possible, and it is compatible
with (1.1), for instance, if P = Q.

Usually one considers the restriction (1.1) as a restriction on the set Ω, and the
distance function ρ is defined as follows

ρ (P, Q) =
√

2σ (P, Q) (1.2)

where σ is the world function σM of the space-time of Minkowski. In the inertial
coordinate system the world function σM has the form

σM (x, x′) =
1

2
gik

(
xi − x′i

) (
xk − x′k

)
, gik = diag

(
c2,−1,−1,−1

)
(1.3)

Consideration of (1.1) as restriction on Ω leads to a geometry on a lattice. Ge-
ometry of Minkowski on a lattice is not uniform and isotropic. It is not invariant
with respect to Lorentz transformations. Nevertheless it is used by theorists for
approximate calculations.

It is more correct to consider (1.1) as a restriction on the form of the distance
function ρ and the world function σ = 1

2
ρ2. A use of the world function is more

convenient, than a use of distance, because it is always real (σ is positive for timelike
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distances, and it is negative for spacelike ones). World function σd for a discrete
geometry Gd can be taken in the form

σd (P, Q) = σM (P,Q) +
λ2

0

2
sgn (σM (P,Q)) ∀P, Q ∈ Ω (1.4)

where Ω is the same point set (continuum) which is used in the space-time geometry
of Minkowski. The relation (1.4) is compatible with restriction (1.1).

Multivariance is the most unexpected and important property of the discrete
geometry Gd. Multivariance of a geometry means that a vector AB at the point A
has many equivalent vectors CD, CD′, CD′′,...at the point C, but these vectors
are not equivalent between themselves. Contemporary theorists do not accept the
property of multivariance in a geometry and try to remove it, if it appears by
accident in geometry. For instance, when it appears in the Riemannian geometry,
one removes this property, connecting any of numerous vectors CD, CD′, CD′′,...at
the point C with the path of its parallel transport from the point A and asserting
absence of absolute parallelism in the Riemannian geometry.

Multivariance for spacelike vectors takes place in the space-time geometry of
Minkowski. Ignoring this multivariance, one cannot describe motion of tachyons.
Conventional viewpoint, that tachyons do not exist is connected with disregard of
the spacelike vectors multivariance.

Such a relation to multivariance is connected with the fact that beginning from
Euclid one studied only proper Euclidean geometry, assuming that the space-time
geometry cannot have any additional properties which are absent in the Euclidean
geometry. The multivariance is denied in the Riemannian geometry, because one
considers absence of absolute parallelism as a less defect of the geometry, than
multivariance of the vector equivalence. Besides, the multivariance is incompatible
with contemporary methods of differential geometry. The operations of the linear
vector space Ln (summation of vectors u ∈ Ln and multiplication of a vector u ∈ Ln

by a real number) are not adequate in the multivariant geometry. The fact is that
any linvector u ∈ Ln exist in one copy. We use the name linear vector (linvector)
for vectors u ∈ Ln, in order to distinguish it from the geometric vector (g-vector)
AB, which is defined as the ordered set of two points AB = {A,B} ∈ Ω × Ω.
There are many equivalent g-vectors in any space-time geometry. In the Euclidean
geometry GE the set ΩAB of g-vectors CD ∈Ω×Ω form the equivalence class [AB]
of the g-vector AB. All the g-vectors of [AB] are equivalent between themselves,
and all [AB] may be set in correspondence with all linvectors of Ln. As a result
linear operations of Ln can be used for g-vectors of Euclidean geometry GE. In the
multivariant geometry the set of g-vectors ΩAB does not form the equivalence class,
because ΩAB contains the g-vectors, which are not equivalent between themselves
(they are equivalent only to g-vector AB). As a result operations of the linear space
Ln are not adequate in the multivariant geometry. They can be introduced, but
these operations appear to be ambiguous.

Multivariance of the space-time geometry generates a random wobbling of par-
ticle world lines. In the geometry of Minkowski GM the equivalence of timelike
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vectors is not multivariant, whereas the equality (equivalence) of spacelike vectors is
multivariant. Wobbling of spacelike world line has infinite amplitude, and a single
tachyon cannot be detected due to infinite random wobbling of its world line. As a
result it is used to think that tachyons do not exist.

In the discrete geometry Gd both timelike and spacelike world lines wobble. How-
ever, the wobbling amplitude of timelike world lines is restricted by the elementary
length λ0, and it vanishes in the geometry of Minkowski GM, where λ0 = 0. The
wobbling amplitude of spacelike world lines of tachyons is infinite in GM and in Gd.
In the real space-time geometry Gd the restricted wobbling of timelike world lines
is a reason of stochastic motion of particles. If λ2

0 is proportional to the quantum
constant ~, the statistical description of wobbling world lines (dynamic equations
for the statistical ensemble) leads to the Schrödinger equation [10].

In the discrete geometry Gd all geometric quantities are functions of the world
function σd. In particular, the dimension n of a geometry is determined by its world
function σ. In Gd the dimension has no definite value. It is rather unusual, because
in the Riemannian geometry the dimension of the geometry is a definite natural
number.

If the quantum particles Sq are stochastic particles, described in terms of statis-
tical ensemble E [Sst], dynamic equations for any quantum particle can be reduced
to dynamic equations for a statistical ensemble E [Sst] of stochastic particles Sst. In
particular, the Dirac equation is to be reduced to the dynamic equations for some
statistical ensemble E [SDst] of stochastic particles SDst. One can introduce a ”deter-
ministic model” Sd of a quantum particle Sst by means of dynamic disquantization
(D-disquantization) of the statistical ensemble E [Sst] of the stochastic particle Sst

[9]. Dynamic disquantization is a dynamic operation which does not use quantum
principles. As a result of the dynamic disquantization all derivatives ∂k ≡ ∂/∂xk in
the dynamic equations are replaced by derivatives which are in parallel with 4-vector
jk of the particle current

∂k → jkj
l

jsjs
∂l (1.5)

As a result of the dynamic disquantization the dynamic equations for the statistical
ensemble E [Sst] of stochastic particles Sst turn to dynamic equations for the statisti-
cal ensemble E [Sd] of deterministic particles Sd. In the Lagrange representation the
dynamic equations for Sd are ordinary differential equations, because they contain
derivatives only along the direction of the vector jk. The dynamic system Sd has
finite number of the freedom degrees. The dynamic system Sd can be interpreted as
a deterministic model of the stochastic particle Sst. Dynamic equations for Sd may
contain the quantum constant ~, because in the dynamic disquantization one uses
only procedure (1.5), but one does not use the limit ~ → 0. In particular, if the
stochastic particle Sst is the Dirac particle SD described by the Dirac equation, the
deterministic model of the Dirac particle is a dynamic system having ten degrees
of freedom [11]. It may be interpreted as a rotator (two rigidly connected pointlike
particles). If one follows only one particle of the rotator, one concludes that the
world line of the deterministic Dirac particle appears to be a helix (spacelike or
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timelike) with timelike axis. Neutrino is believed to be a Dirac particle. As a result
neutrino appears to be a tachyon moving along the spacelike helix with timelike
axis. (Timelike world line of neutrino is improbable, because in this case the regular
velocity of neutrino appears to be essentially less, than the speed of the light). Note
that conventionally the deterministic model SDd of the Dirac particle SDst is con-
sidered as a pointlike tardion equipped with spin (angular momentum). The term
”tardion” means a particle having timelike world line, whereas the term ”tachyon”
means a particle having spacelike world line.

As we shall see, the Dirac particle is described by three-point skeleton P2 =
{P0, P1, P2}, or by three connected vectors P0P1, P0P2, P1P2. One of these vectors
is spacelike and two of them are timelike. The timelike vector wobbling amplitude
is restricted by the elementary length λ0, whereas the spacelike vector wobbling
amplitude is not restricted (infinite). All points of the skeleton P2 = {P0, P1, P2}
are connected rigidly. The world chain wobbling of such a particle is a mixture of the
unrestricted tachyon wobbling and of the tardion wobbling, restricted by value of λ0

(or by ~). As a result of dynamical disquantization of SDst one obtains the dynamic
system SDd, which is described in the space-time geometry of Minkowski by a helical
world line (spacelike or timelike) with the timelike axis. The dynamic equations for
SDd contain the quantum constant ~ (in the expression for spin). It means that the
dynamic system SDd is not a classical approximation of the stochastic Dirac particle
SDst.

The deterministic model SDd of the stochastic particle SDst is a dynamic system
SDd, which can be considered in the space-time geometry of Minkowski. The dy-
namic system SDd has finite number of the freedom degrees. The deterministic model
SDd describes the arrangement of the particle, described by the Dirac equation. One
should take into account that usually one does not consider the deterministic model
SDd, which contains the quantum constant ~ and explains the particle spin by a
rotation of a particle due to its helical world line. Instead, one considers the dy-
namic system SDcl, which is described by a straight world line (not helix), and spin
is introduced axiomatically. From the dynamic system Scl one cannot obtain any
information on arrangement of SDst.

Attempts of obtaining information on arrangement of SDst from the contempo-
rary elementary particle theory remind attempts of investigating the atom arrange-
ment on the basis of the periodical system of chemical elements and of chemical
reactions between chemical elements. One obtains a lot of information on the atom
properties of different chemical elements and no information on the planetary model
of atoms.

Replacement of quantum theory by a statistical description together with the
dynamic disquantiazation admit one to construct a new approach to description of
elementary particles. We qualify this approach as structural approach. The conven-
tional approach to the elementary particles description (standard model) is qualified
as empirical approach. Empirical approach to theory of elementary particles is based
on the quantum theory. The empirical approach labels elementary particles by quan-
tum numbers. It cannot determine the connection of quantum numbers with the
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elementary particles arrangement. The structural approach admits one to determine
arrangement (structure) of the elementary particle.

The difference between the structural approach and the empirical one can be seen
in the theory of chemical elements. The empirical approach is realized by chemical
methods, when chemical elements are systematized by the periodic system of chem-
ical elements, and one investigates reactions between different chemical substances.
Empirical approach cannot determine the atom structure (nucleus, electronic enve-
lope). On the contrary, the ctructural approach uses methods of quantum mechanics
and of atomic physics. It admits one to discover the atom arrangement.

Thus, we have presented briefly the way to the tachyon model of neutrino, which
is based on two logical reloadings (in dynamics and in the space-time geometry). It
is the most short way, but in reality we went to the deterministic model of neutrino
by another way. We search defects and mistakes in the existing theory of microcosm
physics and eliminate them step by step. Such an investigation strategy is the best
one in the case, when a theory continues to be in crisis. As far as I know, nobody uses
such a strategy. Furthermore I was criticized for such a strategy, because nobody
believes that there may be mistakes in the existing theory of microcosm physics.
All researchers dreamed about new happy ideas, which should help us to go out
of crisis. Further we shall present the way to the deterministic model of neutrino.
It was a long way, which took thirty years. Happily, it was the way not only to
the deterministic model of neutrino. It was the way to the skeleton conception of
elementary particles [12].

2 United formalism for particle dynamics

After explanation of heat phenomena by means of the kinetic gas theory it was
reasonable to think, that quantum effects may be explained as some stochastic mo-
tion of microparticles. Some researchers [13, 14] tried to obtain quantum mechanics
as a statistical description of stochastically moving microparticles. They failed to
explain the quantum mechanics as a statistical description of stochastically moving
particles. Moyal [13] tried to reduce quantum dynamic equations to the form, which
is characteristic for dynamic equations of stochastic processes. Fenyes [14] tried
to obtain statistical description, using similarity between the Schrödinger equation
and the Fokker equation for diffusion processes. Both authors used the concept of
the wave function without understanding, what it means. Explanation of quantum
phenomena is hardly possible without understanding, what is the wave function.
However, then nobody knew, what is the wave function.

The fact, that the Schrödinger equation may be reduced to irrotational flow
of some quantum fluid was shown by Madelung [15]. However, representation of
the hydrodynamic equations for ideal fluid in terms of the wave function needs a
complete integration of hydrodynamic equations.

For transition from the Schrödinger equation to the system of four hydrody-
namic equations, the complex Schrödinger equation for the wave function ψ =
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√
ρ exp (iϕ/~) is represented in the form of two real equations for amplitude

√
ρ

and for the phase ϕ. To obtain hydrodynamic equations, it is sufficient to take
gradient from the equation for the phase ϕ. As a result one obtains four dynamic
equations, which turn into hydrodynamic equations after introducing proper desig-
nations. In other words, for transition from dynamic equations in terms of the wave
function to the hydrodynamic form of these equations, one needs to differentiate
dynamic equations. On the contrary, to pass from hydrodynamic form of dynamic
equations to their representation in terms of the wave function, one needs to in-
tegrate dynamic equations. In the case of the irrotational flow this integration is
carried out rather simply, whereas in the case of vortical flow the way of integration
became to be known only in the end of twentieth century [8].

Bohm [16] used the hydrodynamic representation of the Schrödinger equation
for interpretation of quantum mechanics. He started from the wave function and
quantum principles and interpreted them in hydrodynamic terms. However, he could
not found quantum mechanics on the basis of hydrodynamics, because for such a
foundation he would start from hydrodynamic concepts and equations, in order to
obtain the wave function in hydrodynamic terms. He could not make this, because
in this case he would be forced to integrate hydrodynamic equations in general case,
but not only for irrotational flows. Integration of the hydrodynamic equations was
not known almost during the whole twentieth century.

Information on other attempts of a statistical foundation of quantum mechanics
can be found in the book by Holland [17]. All authors tried to found the nonrel-
ativistic quantum phenomena on the basis of nonrelativistic statistical description.
This circumstance was the main reason of failures. The nonrelativistic quantum
mechanics describes a mean motion of particles, and the mean motion is nonrela-
tivistic. However, the nonrelativistic character of the mean motion does not mean,
that the exact particle motion is also nonrelativistic. Stochastic component of the
particle motion may be relativistic, and this component disappear at the averaging.
To obtain a correct description one should use a relativistic statistical description.

Nonrelativistic statistical description is produced usually in terms of the prob-
ability density. It uses nonrelativistic concept of particle state as a point in the
phase space of coordinates and momenta. At proper normalization the nonnegative
density ρ of particles in the phase space is used as a probability density.

In the relativistic physics the state of a particle is determined by its world line
(not as a point in the phase space). As a result the state density of a statistical
ensemble of relativistic particles at some space-time point x is determined by the
vector jk (x) of the 4-current [18]. This vector cannot be described in terms of the
probability density. As a result the statistical description of relativistic stochastic
particle differs from that of the nonrelativistic particles. The relativistic statistical
description of stochastically moving particles is a consideration of many stochas-
tic particles (statistical ensemble), and it is the primary definition of the statistical
description. Consideration of the statistical ensemble of stochastic particles is a con-
sideration of some continuous medium, consisting of infinite number of independent
stochastic particles [18, 19, 20]. Thus, a statistical ensemble of stochastic particles is
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a dynamic system, which is described by some dynamic equations, whereas a single
stochastic particle is not a dynamic system, and there are no dynamic equations,
describing a single stochastic particle.

Consideration of the statistical ensemble admits one to obtain a dynamic system,
whose evolution can be investigated. Of course, the relativistic statistical description
in terms of statistical ensemble and that in terms of a fluid are connected. However,
one prefers to use nonrelativistic statistical description in terms of the probability
density. The Brownian particles are described by means of the nonrelativistic statis-
tical description. Such an approach is true, because the stochastic component of the
Brownian particle motion is nonrelativistic, and the state of the Brownian particle
may be described as a point in the usual space.

However, application of nonrelativistic statistical description to quantum particle
is incorrect, because the nonrelativistic quantum mechanics is in reality a relativistic
conception. This statement looks rather unexpected. But note, that if one knows
nothing about the stochastic component of a particle motion, one should consider the
general (relativistic) case. If one considers the nonrelativistic quantum mechanics as
a relativistic conception, but the quantum mechanics appears to be a nonrelativistic
conception, such a consideration of quantum mechanics as a relativistic conception
will be true, because a nonrelativistic conception is a special case of a relativistic
conception. However, if one considers the nonrelativistic quantum mechanics as a
nonrelativistic conception, but it appears to be a relativistic conception, the nonrel-
ativistic consideration will be incorrect, in general. The difference lies in the concept
of the particle state.

Thus, if one tries to obtain a statistical foundation of quantum mechanics as a
statistical description of stochastically moving particles, one should use adequate
relativistic concepts. Formalism of nonrelativistic quantum mechanics is nonrela-
tivistic. To produce a statistical foundation of quantum mechanics, one should carry
out a logical reloading, i.e. a transition from inadequate (nonrelativistic) concepts to
adequate (relativistic) concepts. It means that the probability density ρ (x) should
be replaced by the ”probability vector” jk (x) (world lines density). Introduction of
4-vector jk (x) means a consideration of some ”quantum fluid”. The wave function
ψ is a way of the fluid description [8], and it appears as a result of description of the
”quantum fluid”, which describes the state of the statistical ensemble. As a result
the main concept of the quantum mechanics (the wave function) appears to be a
secondary derivative concept. The wave function may be introduced and interpreted
in terms of concepts of the statistical ensemble. This fact admits one to found the
quantum mechanics as a statistical description of stochastically moving particles.

Relativistic character of the nonrelativistic quantum mechanics makes to be use-
less the construction of relativistic quantum theory as a result of uniting of quantum
and relativistic principles. Such an uniting is inconsistent, because nonrelativistic
quantum mechanics is already a nonrelativistic approximation of a relativistic con-
ception. Such an uniting reminds an unification of axiomatic conception of thermo-
dynamics with the model conception of the kinetic gas theory. Relativistic quantum
theory should be obtained as a refuse from the nonrelativistic approximation of the
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relativistic statistical foundation of the quantum mechanics. It means that the con-
ventional conception of the relativistic quantum theory is doomed to fitting instead
of logical development of the existing relativistic statistical description.

The main difference between the quantum mechanics and statistical description
of stochastic particles lies in a use of the von Neumann formula for calculations of
mean values

〈f〉 =

∫
ψ∗fψdx (2.1)

According to statistical approach this formula is valid, if f is an arbitrary function of
coordinate x, or it is an additive quantity (energy, momentum, angular momentum).
According to the von Neumann interpretation the formula (2.1) is valid for arbitrary
function of coordinates and momentum f (x,p), p = −i~∇. The statement of
the von Neumann theorem that one cannot introduce hidden variables in quantum
mechanics is based on application of formula (2.1) to arbitrary functions f (x,p) [21].
The statistical description of stochastic particles my be considered as an introduction
of hidden variables, but in this case formula (2.1) is not valid for arbitrary functions
f (x,p), and there is no conflict with the theorem on hidden variables.

It is worth to note, that the logical reloading of statistical description to a rela-
tivistic conception does not need any new hypothesis. The probability density is not
used simply, because it is an attribute of nonrelativistic description. As far as the
quantum mechanics is a dynamics of a statistical ensemble of stochastic particles,
it follows that the wave function ψ describes a state of the dynamic system E [Sst]
[8]. This dynamic system E [Sst] is statistical ensemble of stochastic particles Sst. If
the statistical ensemble E [Sst] is normalized to one particle, it can be interpreted as
a statistically averaged particle 〈Sst〉. The statistically averaged particle 〈Sst〉 has
energy, momentum and other total characteristics of a single particle Sd, but its
motion is a motion of a statistical ensemble. For instance, 〈Sst〉 may move through
two open slits at once, whereas a single deterministic particle Sd may move only
through one of two open slits.

The Copenhagen interpretation of quantum mechanics, where the wave function
describes a single particle is incompatible with the formalism of quantum mechanics
[21, 22]. As far as the quantum mechanics is a statistical theory (dynamics of
a statistical ensemble), there are two different kinds of quantum measurements:
(1) a massive measurement (M-measurement) which is produced over all elements
(particles) Sst of the statistical ensemble E [Sst], and (2) a single measurement (S-
measurement) which is produced over a single particle Sst of the statistical ensemble
E [Sst]. These measurements have different properties, and one may not mix up
them.

S-measurement of a quantity R gives a random quantity R′, which cannot be
obtained, generally speaking, at a repeated S-measurement. In the S-measurement
one deals with a single stochastic system Sst. The state of the stochastic system Sst

may be changed after S-measurement, which is a dynamical effect on Sst. However,
the state of E [Sst] cannot be changed by this effect, because E [Sst] contains infinite
number of stochastic particles Sst. A repeated S-measurement of the same quantity
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R can be produced on other stochastic particle Sst. It gives, generally speaking,
another value R′′ of the measured quantity R.

M-measurement is a set of N S-measurements (N → ∞). M-measurement of
a quantity R gives a distribution F (R), which can be obtained at repeated M-
measurement. M-measurement of the quantity R at the state ψ of the statistical
ensemble E [Sst] can change the state of the statistical ensemble E [Sst], because
in this case one deals with N (N → ∞) stochastic systems Sst. Any stochastic
system changes after S-measurement produced over it. N changed system S ′st form
a statistical ensemble E [S ′st] at N → ∞. As a result the state ψ of the statistical
ensemble E [Sst] changes.

Is it possible to obtain a definite value R′ at a M-measurement of the quantity
R (instead of the distribution F (R))? It is possible, provided the measurement
is accompanied by a discriminating operation, which removes from the statistical
ensemble E [S ′st] all stochastic systems S ′st, where the measured value of the quantity
R is not equal to R′. The M-measurement accompanied by some discriminating
operation will be referred to as a selective M-measurement (SM-measurement). The
SM-measurement of the quantity R may give a definite value R′ and change the
state ψ of the statistical ensemble. In other words, the SM-measurement may have
properties of the S-measurement and of M-measurement.

At the Copenhagen interpretation of quantum mechanics, where ψ is a state of a
quantum particle Sq, there is only one kind of measurement. In some situation it is
interpreted as M-measurement, in other situation it is interpreted as S-measurement.
It is supposed that such a measurement of the quantity R can give a definite random
value R′ of the quantity R and simultaneously change the state ψ → ψR′ . In
other words, in the Copenhagen interpretation a measurement is supposed to have
properties of SM-measurement. A use of one term for different kinds of measurement
(S-,M-,SM-) leads to numerous paradoxes.

We consider only one of paradoxes: ”action of a measurement at a distance”.
Let us consider a system S = E [Sst] at the state ψ. Let S at the state ψ can
decay into two systems (particles): S1 and S2. Let the two particles states S1 and
S2 appear to be correlated in the sense, that if a S-measurement of the dichotomic
quantity s (spin) in S1 gives the result s′ = 1/2, the S-measurement of the same
quantity s (spin) in S2 gives the result s′′ = −1/2. Let these particles S1 and S2

move, and at some moment they appear to be divided by the distance L. According
to Copenhagen viewpoint, when one measures the quantity s in S1 and obtains
the result s′ = 1/2, the state of S1 changes (SM-measurement) ψ1 → ψ′1. At the
same time the state of S2 is to be changed ψ2 → ψ′2, because in S2 the quantity
s takes the value s′′ = −1/2. As a result a measurement of the quantity s in S1

changes instantly the state of the particle S2, although the distance L between the
particles S1 and S2 may be large (”action of a measurement at a distance”). Such a
situation is incompatible with the special relativity principles, and it is considered
as a paradox.

The paradox is resolved by a reference, that in the given case there is a SM-
measurement, which is accompanied by a discriminating operation, and information

12



on this operation is to be transmitted from point A1, , to the point A2, where S2

is located. Indeed, if one speaks on influence of measurement in S1 on the wave
function of S2, one should consider ensembles E [S1] and E [S2], because the wave
function relates to the statistical ensemble E [S1], but not to the single particle S1 In
the SM-measurement in one considers N (N →∞) stochastic systems S ′1, S

′
2, ...S

′
N

of the statistical ensemble E [S1] and N (N → ∞) stochastic systems S ′′1 , S ′′2 , ...S ′′N
of the statistical ensemble E [S2]. The stochastic system S ′k of E [S1] correlates with
stochastic system S ′′k of E [S2]. It means that if the quantity s has the value s′ = 1/2
in S ′k of S1 , then the quantity s has the value s′′ = −1/2 in S ′′k of S2. One
measures the quantity s in all N stochastic systems S ′k, k = 1, 2, ...N and obtains
that the value s′ = 1/2 appears in stochastic systems S ′(k1), S

′
(k2), ...S

′
(km) of E [S1].

Then due to correlation the quantity s has the value s′ = −1/2 in stochastic systems

S ′′(k1), S
′′
(k2), ...S

′′
(km) of E [S2]. One can form the statistical ensemble E [S ′1] = E

[
S ′(kl)

]
.

Its state is described by the wave function ψ′2, where s = 1/2. One can form the

statistical ensemble E [S ′2] = E
[
S ′′(kl)

]
.of the stochastic systems S ′′(k1), S

′′
(k2), ...S

′′
(km).

Its state is described by the wave function ψ′′2, where s = −1/2. However, the
numbers (k1) , (k2) , ... (km) are not known at the point A2, where the system S2 is

found. In order to construct E [S ′2] = E
[
S ′′(kl)

]
with s = −1/2, one needs to transmit

these numbers from A1 to A2. This transmission cannot be realized with the speed,
which is greater, than the speed of the light.

The united method of description of dynamic systems and stochastic ones is
presented in [22]. Here we present only a short scheme of this method application
in the example of a free quantum particle.

Statistical ensemble E [Scl] of free nonrelativistic classical particles Scl is described
by the action

AE[Scl] [x] =

∫ ∫

Vξ

m

2
ẋ2ρ0 (ξ) dtdξ, ẋ ≡dx

dt
(2.2)

where x = x (t, ξ) , ξ = {ξ1, ξ2, ξ3} are parameters, labelling the particles of the
statistical ensemble, and ρ0 is a weight factor.

If the particles of the ensemble are stochastic, the stochasticity is taken into
account by additional dynamical variables in the action. The action for the statistical
ensemble E [Sst] of stochastic particles Sst is written in the form

AE[Sst] [x,u] =

∫ ∫

Vξ

{
m

2
ẋ2 +

m

2
u2 − ~

2
∇u

}
ρ0 (ξ) dtdξ, ẋ ≡dx

dt
(2.3)

The variable x = x (t, ξ) describes the regular component of the particle motion. The
variable u = u (t,x) describes the mean value of the stochastic velocity component,
~ is the quantum constant. The second term in (2.3) describes the kinetic energy
of the stochastic velocity component. The third term describes interaction between
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the stochastic component u (t,x) and the regular component ẋ (t, ξ). The operator

∇ =

{
∂

∂x1
,

∂

∂x2
,

∂

∂x3

}
(2.4)

is defined in the space of coordinates x.
Description of a stochastic physical system distinguishes from that of a determin-

istic physical system only by additional terms and by additional dynamic variables
in the Lagrangian function. The additional dynamic variables describe stochasticity
of the particle motion.

Dynamic equations for the dynamic system E [Sst] are obtained as a result of
variation of the action (2.3) with respect to dynamic variables x and u.

To obtain the action functional for Sst from the action (2.3) for E [Sst], we should
omit integration over ξ in (2.3). We obtain

ASst [x,u] =

∫ {
m

2
ẋ2 +

m

2
u2 − ~

2
∇u

}
dt, ẋ ≡dx

dt
(2.5)

where x = x (t) and u = u (t,x) are dependent dynamic variables. The action
functional (2.5) is not well defined for ~ 6= 0, because the operator ∇ is defined in
some 3-dimensional vicinity of point x, but not at the point x itself. As far as the
action functional (2.5) is not well defined, one cannot obtain dynamic equations for
Sst. By definition it means that the particle Sst is stochastic. Setting ~ = 0 in (2.3),
we transform the action (2.3) into the action (2.2), because in this case u = 0 in
virtue of dynamic equations.

The quantum constant ~ has been introduced in the action (2.3), in order the
description by means of the action (2.3) be equivalent to the quantum description
by means of the Schrödinger equation. If we substitute the term −~∇u/2 by some
function f (u,∇u), we obtain statistical description of other stochastic system with
other form of stochasticity, which does not coincide with the quantum stochastic-
ity. In other words, the form of the last term in (2.3) describes the type of the
stochasticity.

To obtain dynamic equations for the statistical ensemble E [Sst] of stochastic
systems Sst, one needs to vary the action (2.3). Variation of (2.3) with respect to u
gives

δAE[Sst] [x,u] =

∫ ∫

Vξ

{
muδu− ~

2
∇δu

}
ρ0 (ξ) dtdξ

=

∫ ∫

Vx

{
muδu− ~

2
∇δu

}
ρ0 (ξ)

∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
dtdx

=

∫ ∫

Vx

δu

{
muρ +

~
2
∇ρ

}
dtdx−

∫ ∮
~
2
ρδudtdS
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where

ρ = ρ0 (ξ)
∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
= ρ0 (ξ)

(
∂ (x1, x2, x3)

∂ (ξ1, ξ2, ξ3)

)−1

(2.6)

We obtain the following dynamic equation

δu : mρu +
~
2
∇ρ = 0 (2.7)

where ρ = ρ (t,x) is defined by the relation (2.6). Resolving (2.7) with respect to
u, we obtain the equation

u = u (t,x) = − ~
2m

∇ ln ρ, (2.8)

which reminds the expression for the mean velocity of the Brownian particle with
the diffusion coefficient D = ~/2m.

Variation of the action (2.3) with respect to x is produced at fixed form of u,
but u = u (t,x), and argument x of the function u should be varied. Variation of
(2.3) with respect to x gives

δASst [x,u] =

∫ {
mẋδẋ + δ

(
m

2
u2 − ~

2
∇u

)}
ρ0 (ξ) dtdξ, (2.9)

One obtains dynamic equation

δx : −m
d2x

dt2
+ ∇

(
m

2
u2 − ~

2
∇u

)
= 0 (2.10)

Substituting (2.8) in (2.10) and considering ρ as a function of t,x, one obtains

m
d2x

dt2
= −∇UB (2.11)

where d/dt means the substantial derivative with respect to time t

dF

dt
≡ ∂ (F, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)

∇ is gradient in the space of coordinates x, and UB is so-called Bohm potential

UB (t,x) = −m

2
u2 +

~
2
∇u = U

(
ρ, ∇ρ, ∇2ρ

)

=
~2

8m

(∇ρ)2

ρ2
− ~2

4m

∇2ρ

ρ
= − ~

2

2m

1√
ρ
∇2√ρ (2.12)

where for calculation of UB one uses the relation (2.8)
One obtains

m
d2x

dt2
=
~2

2m
∇

(
1√
ρ
∇2√ρ

)
(2.13)
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However, the relation (2.6) determines the variable ρ as a function of variables
xα,β ≡ ∂xα/∂ξβ, and one needs to take into account this circumstance in the dynamic
equation (2.13).

In the Euler representation (in terms of independent variables t,x) the equation
(2.11) can be written in the form

dv

dt
=

∂v

∂t
+ (v∇)v = − 1

m
∇UB, v = v (t,x) (2.14)

Using the relation (2.6), let us represent the quantity ρv in the form

ρv (t,x) = ρ0 (ξ)
∂ (t, ξ1, ξ2, ξ3)

∂ (t, x1, x2, x3)

∂ (x,ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)
= ρ0 (ξ)

∂ (x,ξ1, ξ2, ξ3)

∂ (t, x1, x2, x3)
(2.15)

Then using identity

∂

∂t

(
ρ0 (ξ)

∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)

)
+

∂

∂xα

(
ρ0 (ξ)

∂ (xα,ξ1, ξ2, ξ3)

∂ (t, x1, x2, x3)

)
≡ 0 (2.16)

one obtains the continuity equation for variables ρ = ρ (t,x) and v = v (t,x)

∂ρ

∂t
+

∂

∂xα
(ρvα) = 0 (2.17)

Equations (2.14), (2.17) together with (2.12) form dynamic equations for the sta-
tistical ensemble of stochastic particles in Euler representation, when independent
dynamic variables are t,x.

Any reference to the stochastic velocity distribution or to some other probability
distribution is absent. Influence of this distribution on the mean motion of the parti-
cles is described by the form of Bohm potential UB (2.12). The situation reminds the
case of the gas dynamics, where the action of the Maxwell velocity distribution on
the gas motion is described by the internal gas energy. Of course, such a description
is not comprehensive, however, it is sufficient for a description of the mean motion
of the stochastic particle. As a result we obtain a purely dynamic description of the
mean motion of a stochastic particle.

The fluid described by dynamic equations (2.14), (2.17) can be described in
terms of two-component wave function [8] or [7]. One obtains the following dynamic
equation for wave function ψ

i~∂0ψ +
~2

2m
∇2ψ +

~2

8m
∇2sα · (sα − 2σα) ψ − ~2

4m

∇ρ

ρ
∇sασαψ = 0 (2.18)

where

ψ =

(
ψ1

ψ2

)
, ρ = ψ∗ψ, sα =

ψ∗σαψ

ρ
, α = 1, 2, 3 (2.19)

σα are 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.20)
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In the case of non-rotational flow the wave function becomes to be one component,
because at ψ = ψ1 = aψ2 , a =const and sα =const, α = 1, 2, 3. In this case the
equation (2.18) turns to the linear equation (Schrödinger equation)

i~∂0ψ +
~2

2m
∇2ψ = 0 (2.21)

One should note a specificity of description in terms of the wave function. Any
ideal fluid may be described in terms of the wave function [8]

3 The case of relativistic particles.

The form of stochasticity of nonrelativistic stochastic particle in (2.5) is defined by
two last terms. In the relativistic case the action for the statistical ensemble (2.5)
is replaced by the action [23]

AE[Sst] [x,κ] = −
∫ ∫

Vξ

mcK
√

gikẋiẋkρ0 (ξ) dτdξ, ẋ ≡dx

dτ
(3.1)

K =

√
1 + λ2 (gklκkκl + ∂kκk), λ =

~
mc

(3.2)

where x =
{
xk

}
=

{
xk (τ , ξ)

}
, k = 0, 1, 2, 3. The quantity gkl =diag{c2,−1,−1,−1}

is the metric tensor. The independent variables ξ = {ξ1, ξ2, ξ3} label the particles
of the statistical ensemble. The dependent variables κk = κk (x), k = 0, 1, 2, 3 form
some force field, connected with the mean stochastic component ul of the parti-
cle 4-velocity by the relation κl = m

~ ul, and λ is the Compton wave length of the
particle.

In the nonrelativistic approximation one may neglect the temporal component
κ0 = m

~ u0 with respect to the spatial one κ = m
~ u. Setting τ = t = x0 in (3.1), (3.2)

we obtain in the nonrelativistic approximation instead of (3.1)

AE[Sst] [x,u] =

∫ ∫

Vξ

{
−mc2 +

m

2
ẋ2 +

m

2
u2 − ~

2
∇u

}
ρ0 (ξ) dtdξ, ẋ ≡dx

dt

(3.3)
The action (3.3) coincides with the action (2.3) except for the first term, which

does not contribute to dynamic equations.
Let us add to the action (3.1) the term describing interaction with the electro-

magnetic field and write it in the form

A [x, κ] =

∫ {
−mcK

√
gikẋiẋk − e

c
Akẋ

k
}

d4ξ, d4ξ = dξ0dξ (3.4)

K =

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, τ= ξ0 (3.5)
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Here x = {xi (ξ0, ξ)} , i = 0, 1, 2, 3 are dependent variables. ξ = {ξ0, ξ} =
{ξk} , k = 0, 1, 2, 3 are independent variables, and ẋi ≡ dxi/dξ0. The quantities
κl =

{
κl (x)

}
, l = 0, 1, 2, 3 are dependent variables, describing stochastic com-

ponent of the particle motion, Ak = {Ak (x)} , k = 0, 1, 2, 3 is the potential of
electromagnetic field. We shall refer to the dynamic system, described by the action
(3.4), (3.5) as SKG, because irrotational flow of SKG is described by the Klein-Gordon
equation [24]. We present here this transformation to the Klein-Gordon form. Here
and farther a summation is produced over repeated Latin indices (0− 3) and over
Greek indices (1− 3).

Let us consider variables ξ = ξ (x) in (3.4) as dependent variables and variables
x as independent variables. Let the Jacobian

J =
∂ (ξ0, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξi,k

∣∣∣∣ , ξi,k ≡ ∂kξi, i, k = 0, 1, 2, 3 (3.6)

be considered to be a multilinear function of ξi,k J = J
(
ξi,k

)
. Then

d4ξ = Jd4x, ẋi ≡ dxi

dξ0

≡ ∂ (xi, ξ1, ξ2, ξ3)

∂ (ξ0, ξ1, ξ2, ξ3)
= J−1 ∂J

∂ξ0,i

(3.7)

After transformation to dependent variables ξ the action (3.4) takes the form

A [ξ, κ] =

∫ {
−mcK

√
gik

∂J

∂ξ0,i

∂J

∂ξ0,k

− e

c
Ak

∂J

∂ξ0,k

}
d4x, (3.8)

Let us introduce new variables

jk =
∂J

∂ξ0,k

, k = 0, 1, 2, 3 (3.9)

by means of Lagrange multipliers pk

A [ξ, κ, j, p] =

∫ {
−mcK

√
gikjijk − e

c
Akj

k + pk

(
∂J

∂ξ0,k

− jk

)}
d4x, (3.10)

The variable ξ0 is fictitious. Variation with respect to ξi gives

δA
δξi

= −∂l

(
pk

∂2J

∂ξ0,k∂ξi,l

)
= 0, i = 0, 1, 2, 3 (3.11)

Using identities
∂2J

∂ξ0,k∂ξi,l

≡ J−1

(
∂J

∂ξ0,k

∂J

∂ξi,l

− ∂J

∂ξ0,l

∂J

∂ξi,k

)
(3.12)

∂J

∂ξi,l

ξk,l ≡ Jδi
k, ∂l

∂2J

∂ξ0,k∂ξi,l

≡ 0 (3.13)
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one can test by direct substitution that the general solution of linear equations (3.11)
has the form

pk = b0 (∂kϕ + gα (ξ) ∂kξα) , k = 0, 1, 2, 3 (3.14)

where b0 6= 0 is a constant, gα (ξ) , α = 1, 2, 3 are arbitrary functions of ξ = {ξ1, ξ2, ξ3},
and ϕ is the dynamic variable ξ0, which ceases to be fictitious. Let us substitute
(3.14) in (3.10). The term of the form ∂kϕ∂J/∂ξ0,k is reduced to Jacobian and does
not contribute to dynamic equations. The terms of the form ξα,k∂J/∂ξ0,k vanish
due to identities (3.13). We obtain

A [ϕ, ξ, κ, j] =

∫ {
−mcK

√
gikjijk − jkπk

}
d4x, (3.15)

where quantities πk are determined by the relations

πk = b0 (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (3.16)

Integration of (3.11) in the form (3.14) is that integration, which admits one to
introduce a wave function. Note that coefficients in the system of equations (3.11)
for pk are constructed of minors of the Jacobian (3.6). It is the circumstance that
admits one to produce a general integration.

Variation of (3.15) with respect to κl gives

δA
δκl

= −λ2mc
√

gikjijk

K
κl + ∂l

λ2mc
√

gikjijk

2K
= 0 (3.17)

It can be written in the form

κl = glk∂kκ, κ =
1

2
ln

λ2mc
√

gikjijk

2Kρ0

(3.18)

where ρ0 is a constant of integration. It means that the stochastic component of
velocity ul = m

~ κl can be presented in the form

ul =
~
m

κl =
~
m

∂lκ =
~

2m
∂l ln

λ2mc
√

jsjs

2Kρ0

=
~

2m
∂l ln

λ2mc
√

jsjs

2ρ0

√
1 + λ2e−κ∂s∂seκ

(3.19)

Substituting (3.5) in (3.18), we obtain dynamic equation for κ

~2
(
∂lκ · ∂lκ + ∂l∂

lκ
)

=
e−4κjsj

s

ρ2
0

−m2c2 (3.20)

It can be transformed to the form

jsj
s = m2c2ρ2

0e
4κ

(
1 + λ2e−κ∂l∂

leκ
)

= m2c2ρ2
0e

4κ

(
1− λ2∂lκ∂lκ +

λ2

2
e−2κ∂l∂

le2κ

)
(3.21)
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Variation of (3.15) with respect to jk gives

πk = − mcKjk√
glsjljs

(3.22)

or
πkg

klπl = m2c2K2 (3.23)

It follows from (3.20), (3.22) and (3.21) that

jk = −
√

glsjljs

mcK
πk = −ρ0e

2κπk, (3.24)

Now we eliminate the variables jk from the action (3.15), using relation (3.24)
and (3.21). We obtain

A [ϕ, ξ, κ] =

∫
m2c2ρ0e

2κ



−K

√(
1− λ2∂lκ∂lκ +

λ2

2
e−2κ∂l∂le2κ

)
+ πkπk



 d4x

or

A [ϕ, ξ, κ] =

∫
m2c2ρ0e

2κ

{
−

(
1− λ2∂lκ∂lκ +

λ2

2
e−2κ∂l∂

le2κ

)
+ πkπk

}
d4x

(3.25)
where πk is determined by the relation (3.16). The bracket in the action (3.25) can
be transformed as follows.

−m2c2e2κ

(
1− λ2∂lκ∂lκ +

λ2

2
e−2κ∂l∂

le2κ

)

= −m2c2e2κ + ~2e2κ∂lκ∂lκ− ~
2

2
∂l∂

le2κ

Let us take into account that the last term has the form of divergence. It does
not contribute to dynamic equations and can be omitted. Omitting this term, we
obtain instead of (3.25)

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2 + ~2∂lκ∂lκ + πkπk

}
d4x, (3.26)

Instead of dynamic variables ϕ, ξ, κ we introduce n-component complex function

ψ = {ψα} =
{√

ρeiϕwα (ξ)
}

=
{√

ρ0e
κ+iϕwα (ξ)

}
, α = 1, 2, ...n (3.27)

Here wα are functions of only ξ = {ξ1, ξ2, ξ3}, having the following properties

α=n∑
α=1

w∗
αwα = 1, − i

2

α=n∑
α=1

(
w∗

α

∂wα

∂ξβ

− ∂w∗
α

∂ξβ

wα

)
= gβ (ξ) (3.28)
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where (∗) denotes complex conjugation. The number n of components of the wave
function ψ is chosen in such a way, that equations (3.28) have a solution. Then we
obtain

ψ∗ψ ≡
α=n∑
α=1

ψ∗αψα = ρ = ρ0e
2κ, ∂lκ =

∂l (ψ
∗ψ)

2ψ∗ψ
(3.29)

πk = −ib0 (ψ∗∂kψ − ∂kψ
∗ · ψ)

2ψ∗ψ
+

e

c
Ak, k = 0, 1, 2, 3 (3.30)

Substituting relations (3.29), (3.30) in (3.26), we obtain the action, written in terms
of the wave function ψ

A [ψ, ψ∗] =

∫ {[
ib0 (ψ∗∂kψ − ∂kψ

∗ · ψ)

2ψ∗ψ
− e

c
Ak

] [
ib0

(
ψ∗∂kψ − ∂kψ∗ · ψ)

2ψ∗ψ
− e

c
Ak

]

+ ~2∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4 (ψ∗ψ)2 −m2c2

}
ψ∗ψd4x (3.31)

Let us use the identity

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ψ∗ψ
+ ∂lψ

∗∂lψ

≡ ∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4ψ∗ψ
+

gls

2
ψ∗ψ

α,β=n∑

α,β=1

Q∗
αβ,lQαβ,s (3.32)

where

Qαβ,l =
1

ψ∗ψ

∣∣∣∣
ψα ψβ

∂lψα ∂lψβ

∣∣∣∣ , Q∗
αβ,l =

1

ψ∗ψ

∣∣∣∣
ψ∗α ψ∗β

∂lψ
∗
α ∂lψ

∗
β

∣∣∣∣ (3.33)

Then we obtain

A [ψ, ψ∗] =

∫ 



(
ib0∂k + e

c
Ak

)
ψ∗

(−ib0∂
k + e

c
Ak

)
ψ

+
b20
2

α,β=n∑
α,β=1

glsQαβ,lQ
∗
αβ,sψ

∗ψ

−m2c2ψ∗ψ +
(
~2 − b2

0

) ∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4ψ∗ψ

}
d4x (3.34)

Let us consider the case of irrotational flow, when gα (ξ) = 0 and the function
ψ has only one component. It follows from (3.33), that Qαβ,l = 0, and only the last
term in (3.34) is not bilinear with respect to ψ, ψ∗. The constant b0 is an arbitrary
integration constant. One may set b0 = ~. Then we obtain instead of (3.34)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

}
d4x (3.35)
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Variation of the action (3.35) with respect to ψ∗ generates the Klein-Gordon equation

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ = 0 (3.36)

Thus, description in terms of the Klein-Gordon equation is a special case of the
stochastic system description by means of the action (3.4), (3.5).

In the case of rotational flow the wave function is two-component, and the dy-
namic equation has the form (see for details in [24]):

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −

(
m2c2 +

~2

4
(∂lsα)

(
∂lsα

))
ψ

= −~2∂l

(
ρ∂lsα

)

2ρ
(σα − sα) ψ (3.37)

where 3-vector s = {s1, s2, s3, } is defined by the relation

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (3.38)

ψ =
(

ψ1
ψ2

)
, ψ∗ = (ψ∗1, ψ

∗
2) , (3.39)

and Pauli matrices σ = {σ1, σ2, σ3} have the form

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.40)

The gradient of the unit 3-vector s = {s1, s2, s3} describes rotational component
of the fluid flow. Equation (3.37) turns to the conventional Klein-Gordon equation
(3.36), if s =const. Curl of the vector field πk, determined by the relation

∂kπl − ∂lπk = −4b0 [∂kn× ∂ln] z +
e

c
(∂kAl − ∂lAk) , k, l = 0, 1, 2, 3 (3.41)

Here the quantities n and z are obtained from the wave function, presented in the
form

ψ =
√

ρeiϕ (nσ) χ, ψ∗ =
√

ρe−iϕχ∗ (σn) , n2 = 1, χ∗χ = 1 (3.42)

by means of relations

s = 2n (nz)− z, n =
s + z√

2 (1 + (sz))
(3.43)

z = χ∗σχ, z2 = χ∗χ = 1 (3.44)

The fundamental difference between the nonrelativistic description (2.8) and the
relativistic description (3.19) is as follows. The nonrelativistic equation (2.8) does
not contain temporal derivatives, and the field u is determined uniquely by its
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source (the particle density ρ). The relativistic equation (3.19) contains temporal
derivatives, and the κ-field uk = ~κk/m can exist without its source. The relativistic
κ-field uk = ~κk/m can escape from its source. Besides, the κ-field changes the
effective particle mass, as one can see from the relations (3.1), (3.2). If κ2 is large
enough, or ∂kκ

k < 0 and
∣∣∂kκ

k
∣∣ is large enough, the effective particle mass may be

imaginary. In this case the mean world line may turn-round in the time direction,
and this turn-round may appear to be connected with the pair production, or with
the pair annihilation.

In the nonrelativistic case the mean stochastic velocity u may be eliminated and
replaced by its source (the particle density ρ). In the relativistic case the κ-field has
in addition its own degrees of freedom, which cannot be eliminated, replacing the
κ-field by its source. The κ-field can travel from one space-time region to another
one.

The uniform formalism of the particle dynamics (with the statistical ensemble
as a basic object of dynamics) admits one to describe such a physical phenomena,
which cannot be described in the framework of the conventional dynamic formalism,
when the basic object is a single particle. In particular, one can describe the pair
production effect, which cannot been described in the framework of the conventional
relativistic mechanics, as well as in the framework of the nonrelativistic quantum
mechanics.

4 Deterministic models of elementary particles

Stochastic (and quantum) particles Sst are described by the statistical ensemble
E [Sst]. Dynamic equations for E [Sst] form a system of partial differential equa-
tions (PDE). Is it possible to simplify description of stochastic particle, reducing
the system of PDE to a system of ODE, describing a statistical ensemble E [Sd] of
deterministic particles Sd? It is possible. One needs only to project all derivatives
in the system of PDE onto direction of the particle current jk by means of (1.5).
After such a projection the system of PDE turns to the system of ODE. This system
of ODE form a dynamic equations for a statistical ensemble E [Sd] of determinis-
tic particles Sd. The deterministic particle Sd is called a deterministic model of
stochastic particle Sst. Such a procedure is called dynamic disquantization [9]. The
dynamic disquantization (D-disquantization) transforms the dynamic system E [Sst]
to a simpler dynamic system E [Sd], where wobbling of the stochastic particle world
line is removed. One can obtain dynamic equations for a single Sd from dynamic
equations for E [Sd]. Introduction of deterministic model is founded on the fact,
that in the coordinate system, where the state of the statistical ensemble is uniform,
the stochastic component (2.8) does not contribute in the dynamic equations of the
statistical ensemble. The dynamic disquantization is a purely dynamic procedure
which removes stochastic fluctuations and generates a deterministic model. In gen-
eral, the dynamic disquantization removes fluctuations of any kind, but not only
quantum fluctuations. For the nonrelativistic equations (Schrödinger equation) the
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D-disquantization is equivalent to a transition from nonrelativistic quantum particle
to a nonrelativistic classical particle. However, for the relativistic quantum particle
(Klein-Gordon equation) the D-disquantization leads to a transition to a relativistic
classical particle equipped by a κ-field, which is responsible for the pair production.

To obtain deterministic model of a relativistic quantum particle, let us vary the
action (3.4), (3.5) taken in the form

A [x, κ] =

∫ {
−mcK

√
gikẋiẋk − e

c
Akẋ

k
}

d4ξ, d4ξ = dξ0dξ, τ= ξ0 (4.1)

K =

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

(4.2)

Here x = {xi (ξ0, ξ)} , i = 0, 1, 2, 3 are dependent variables. ξ = {ξ0, ξ} =
{ξk} , k = 0, 1, 2, 3 are independent variables, and ẋi ≡ dxi/dξ0. The quantities
κl =

{
κl (x)

}
, l = 0, 1, 2, 3 are dependent variables, describing stochastic com-

ponent of the particle velocity, Ak = {Ak (x)} , k = 0, 1, 2, 3 is the potential of
electromagnetic field. Variation of (4.1) gives

δA [x, κ]

δxk
=

d

dτ

mcKgikẋ
i

√
ẋsẋs

− e

c

(
∂Ai

∂xk
− ∂Ak

∂xi

)
ẋi

−λ2mc
√

ẋsẋs

K

(
κl,kκ

l +
1

2
∂k∂lκ

l

)
= 0 (4.3)

δA [x, κ]

δκk
=

mc
√

ẋsẋsJ

K
κk − ∂

∂xk

mc
√

ẋsẋsJ

2K
= 0 (4.4)

Here J is the Jacobian (3.6), which appears, because κl is a function of x, and one
needs to go to integration over x in (4.1), in order to obtain (4.4). One obtains from
(4.4)

κk = ∂kκ =
1

2
∂k ln

mc
√

ẋsẋsJ

K
=

1

2
∂k ln

mc
√

jsjs

K
, jk = ẋkJ (4.5)

Using (4.2), one can write (4.5) in the form of dynamic equation for the variable κ
which can be written in the form

e3κ
(
eκ + λ2∂s∂

seκ
)

= C2m2c2jsj
s (4.6)

where C is the integration constant. The quantity C does not depend on x, but it
may depend on coordinates of other particles.

Introducing new variable
w = eκ (4.7)

the equation (4.6) can be written in the form

~2∂s∂
sw + m2c2w =

C2m2c2jsj
s

w3
(4.8)
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K =

√
1 +

λ2

w
∂s∂sw (4.9)

Equation (4.3) is written in the form

d

dτ

mcKgikẋ
i

√
ẋsẋs

− e

c

(
∂Ai

∂xk
− ∂Ak

∂xi

)
ẋi −mc

√
ẋsẋs∂kK (4.10)

The relativistic stochastic particle Sst is described by equations (4.8) - (4.10).
Its stochasticity is conditioned by the field w, which depends on the state of the
whole statistical ensemble E [Sst] and maybe on other particles via the constant C.
Operation of disquantization cannot be applied to the field w, because this field
is an external field (at least, partly). Thus, the exact equations (4.8) - (4.10) are
dynamic equations for deterministic model simultaneously.

5 Dirac equation in terms of hydrodynamic vari-

ables

The Dirac particle is a dynamic system SD, whose dynamic equation is the Dirac
equation

iγk∂kψ + mcψ = 0 (5.1)

The Dirac dynamic system SD was investigated by many researchers. There is
no possibility to list all them, and we mention only some of them. First, this is
transformation of the Dirac equation on the base of quantum mechanics [26, 27].
The complicated structure of Dirac particle was discovered by Schrödinger [28], who
interpreted it as some complicated quantum motion (zitterbewegung). Investigation
of this quantum motion and different models of Dirac particle can be found in
[29, 30, 31, 32, 33] and references therein. Our investigation differs in absence of any
suppositions on the Dirac particle model and in absence of referring to the quantum
principles. We use only dynamic methods and investigate the Dirac particle SD

simply as a dynamic system. To obtain the deterministic model of the Dirac particle,
one needs to write the Dirac equation in terms of hydrodynamic variables.

The action for a free Dirac particle is written in the form

SD : AD[ψ̄, ψ] =

∫
(−mψ̄ψ +

i

2
~ψ̄γl∂lψ − i

2
~∂lψ̄γlψ)d4x (5.2)

Here ψ is four-component complex wave function, ψ∗ is the Hermitian conjugate
wave function, and ψ̄ = ψ∗γ0 is conjugate one. γi, i = 0, 1, 2, 3 are 4 × 4 complex
constant matrices, satisfying the relation

γlγk + γkγl = 2gklI, k, l = 0, 1, 2, 3. (5.3)
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where I is the unit 4×4 matrix, and gkl =diag(c−2,−1,−1,−1) is the metric tensor.
Considering dynamic system SD, we choose for simplicity such units, where the speed
of the light c = 1.

In our calculations we used the mathematical technique [35, 36], where γ-matrices
are represented as hypercomplex numbers. Using designations

γ5 = γ0123 ≡ γ0γ1γ2γ3, (5.4)

σ = {σ1, σ2, σ3, } = {−iγ2γ3,−iγ3γ1,−iγ1γ2} (5.5)

we make the change of variables

ψ = Aeiϕ+ 1
2
γ5κ exp

(
− i

2
γ5ση

)
exp

(
iπ

2
σn

)
Π (5.6)

ψ∗ = AΠ exp

(
−iπ

2
σn

)
exp

(
− i

2
γ5ση

)
e−iϕ− 1

2
γ5κ (5.7)

where (*) means the Hermitian conjugation, and

Π =
1

4
(1 + γ0)(1 + zσ), z = {zα} = const, α = 1, 2, 3; z2 = 1 (5.8)

is a zero divisor. The quantities A, κ, ϕ, η = {ηα}, n = {nα}, α = 1, 2, 3, n2 = 1
are eight real parameters, determining the wave function ψ. These parameters may
be considered as new dependent variables, describing the state of dynamic system
SD. The quantity ϕ is a scalar, and κ is a pseudoscalar. Six remaining variables A,
η = {ηα}, n = {nα}, α = 1, 2, 3, n2 = 1 can be expressed through the flux 4-vector

jl = ψ̄γlψ, l = 0, 1, 2, 3 (5.9)

and spin 4-pseudovector

Sl = iψ̄γ5γ
lψ, l = 0, 1, 2, 3 (5.10)

Because of two identities

SlSl ≡ −jljl, jlSl ≡ 0, (5.11)

there are only six independent components among eight components of quantities
jl, and Sl.

After change of variables (5.6), (5.7) the γ-matrices disappear from the action
and from dynamic equations. One obtains the action (5.2) in terms of hydrodynamic
variables j, ϕ, ξ, κ (see details of calculations in [11, 34])

SD : AD[j, ϕ, κ, ξ] =

∫
Ld4x, L = Lcl + Lq1 + Lq2 (5.12)

Lcl = −mρ− ~ji∂iϕ− ~jl

2 (1 + ξz)
εαβγξ

α∂lξ
βzγ, ρ ≡

√
jljl (5.13)
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Lq1 = 2mρ sin2(
κ

2
)− ~

2
Sl∂lκ, (5.14)

Lq2 =
~(ρ + j0)

2
εαβγ∂

α jβ

(j0 + ρ)
ξγ − ~

2(ρ + j0)
εαβγ

(
∂0jβ

)
jαξγ (5.15)

Lagrangian is a function of 4-vector jl, scalar ϕ, pseudoscalar κ, and unit 3-pseudovector
ξ, which is connected with the spin 4-pseudovector Sl (5.10) by means of the rela-
tions

ξα = ρ−1

[
Sα − jαS0

(j0 + ρ)

]
, α = 1, 2, 3; ρ ≡

√
jljl (5.16)

S0 = jξ, Sα = ρξα +
(jξ)jα

ρ + j0
, α = 1, 2, 3 (5.17)

After change of variables the description of SD ceases to be relativistically covariant,
because the constant matrix 4-vector γk is transformed to dynamical variables (see
discussion in [37, 39]).

6 Dynamic disquantization of Dirac equation

Let us produce dynamical disquantization [9, 41] of the action (5.12)–(5.15), making
the change (1.5). The action (5.12)–(5.15) takes the form

ADqu[j, ϕ, κ, ξ] =

∫ {
−mρ cos κ− ~ji

(
∂iϕ +

εαβγξ
α∂iξ

βzγ

2 (1 + ξz)

)

+
~jk

2(ρ + j0)ρ
εαβγ

(
∂kj

β
)
jαξγ

}
d4x (6.1)

Note that the second term −~
2
Sl∂lκ in the relation (5.14) is neglected, because 4-

pseudovector Sk is orthogonal to 4-vector jk, and the derivative Sl∂||lκ = Slρ−2jlj
k∂kκ/jsj

s

vanishes. The action (6.1) is also non-relativistically invariant, because the dynamic
disquantization (1.5) is a relativistic procedure.

Although the action (6.1) contains a non-classical variable κ, in fact this variable
is a constant. Indeed, a variation with respect to κ leads to the dynamic equation

δADqu

δκ
= mρ sin κ = 0, ρ ≡

√
jsjs (6.2)

which has solutions
κ = nπ, n = integer (6.3)

Thus, the effective mass meff = m cos κ has two values

meff = m cos κ = κ0m = ±m (6.4)

where κ0 is a dichotomic quantity κ0 = ±1 introduced instead of cos κ. The quantity
κ0 is a parameter of the dynamic system SDqu. It is not to be varying. The action
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(6.1), turns into the action

ADqu[j, ϕ, ξ] =

∫ {
−κ0mρ− ~ji

(
∂iϕ +

εαβγξ
α∂iξ

βzγ

2 (1 + ξz)

)

+
~jk

2(ρ + j0)ρ
εαβγ

(
∂kj

β
)
jαξγ

}
d4x (6.5)

Let us introduce Lagrangian coordinates τ = {τ 0, τ} = {τ i (x)}, i = 0, 1, 2, 3 as
functions of coordinates x in such a way that only coordinate τ 0 changes along the
direction jl. The action (6.5) is transformed to the form

ADqu[x, ξ] =

∫
ADd[x, ξ]dτ , dτ = dτ 1dτ 2dτ 3 (6.6)

where

SDd : ADd[x, ξ] =

∫ {
−κ0m

√
ẋiẋi + ~ (ξ̇×ξ)z

2(1+ξz)

+~ (ẋ×ẍ)ξ

2
√

ẋsẋs(
√

ẋsẋs+ẋ0)

}
dτ 0 (6.7)

After dynamic disquantization the Dirac particle is a statistical ensemble of dynamic
systems SDd, as it follows from (6.6) and (6.7). Any dynamic system SDd has 10
degrees of freedom. Six degrees of freedom describe a progressive motion of a particle
and 4 degrees of freedom describe the rotational motion of the particle. It is a
deterministic model of the Dirac particle, which contains the quantum constant. The
quantum constant appears in classical dynamic equations, because these equations
are to contain magnetic moment. But the magnetic moment, (classical quantity!)
depends on the quantum constant. The variables ξ describe rotation, which is
a deterministic analog of so-called ”zitterbewegung”. The Dirac particle is not a
pointlike particle [34]. Description of internal degrees of freedom in terms of ξ
appears to be nonrelativistic [39, 37], although the translational degrees of freedom
in terms of x are described relativistically.

It is easy to see that the action (6.7) is invariant with respect to transformation
τ 0 → τ̃ 0 = F (τ 0), where F is an arbitrary monotone function. This transformation
admits one to choose the variable t = x0 as a parameter τ 0, or to choose the pa-
rameter τ 0 in such a way that ẋlẋl = ẋ2

0 − ẋ2 = 1. In the last case the parameter
τ 0 is the proper time along the world line of deterministic Dirac particle. Besides,
invariance with respect to transformation τ 0 → τ̃ 0 = F (τ 0) leads to a connection
between the components of the canonical momentum

pk =
∂L

∂ẋk
− d

dτ 0

∂L

∂ẍk
, k = 0, 1, 2, 3

where L is the Lagrange function for the action (6.7).
We shall not consider here problems connected with relativistic non-invariance of

terms, describing internal degrees of freedom, referring to [9], where these problems
are discussed. We obtain dynamic equations generated by the action (6.7), solve
them and try to interpret the obtained solution.
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Variation of the action (6.7) with respect to x gives the dynamic equation

d

dτ 0

(
−κ0m

ẋ√
ẋsẋs

+
~Q
2

(ξ × ẍ)− ~
2

∂Q

∂ẋ
(ẋ× ẍ)ξ +

~
2

d

dτ 0

(Q(ξ × ẋ))

)
= 0 (6.8)

where

Q = Q (ẋ) =
(√

ẋsẋs(
√

ẋsẋs + ẋ0)
)−1

, ẋsẋs = ẋ2
0 − ẋ2 (6.9)

Varying the action (6.7) with respect to x0, we obtain

d

dτ 0

(
κ0m

ẋ0

√
ẋsẋs

− ~
2

∂Q

∂ẋ0
(ẋ× ẍ)ξ

)
= 0 (6.10)

Varying the action (6.7) with respect to ξ, one should take into account the side
constraint ξ2 = 1. Setting

ξα =
ζα

√
ζ2

, α = 1, 2, 3 (6.11)

where ζ is an arbitrary 3-pseudovector, one obtains

δAdcl

δζµ =
δAdcl

δξα

δξα

δζµ =
δAdcl

δξα

δαµ − ξαξµ

√
ζ2

= 0 (6.12)

It means that there are only two independent equations among three dynamic equa-
tions (6.12). They are orthogonal to 3-pseudovector ξ and can be obtained from
equation δAdcl/δξ

α = 0 by means of vector product with ξ.

−~

(
ξ̇ × z

)
× ξ

2(1 + zξ)
+~

(
− d

dτ 0

(ξ × z)

2(1 + zξ)
− (ξ̇ × ξ)z

2(1 + zξ)2
z

)
× ξ + ~

(ẋ× ẍ)× ξ

2
Q = 0

(6.13)
After transformations this equation reduces to the equation (see Appendix)

ξ̇ = −ξ×(ẋ× ẍ)Q, (6.14)

which does not contain the vector z. It means that z determines a fictitious direction
in the space-time.

Using invariance of the action (6.7) with respect to transformation of the param-
eter τ 0, we choose τ 0 in such a way, that

√
ẋsẋs =

√
ẋ2

0 − ẋ2 = 1, ẋ0 =
√

1 + ẋ2 (6.15)

Then, using condition (6.15), we obtain from (6.9) for quantities Q, ∂Q/∂ẋ0, ∂Q/∂ẋ

Q =
1

1 + ẋ0

,
∂Q

∂ẋ0

= −1,
∂Q

∂ẋ
=

ẋ (2 + ẋ0)

(1 + ẋ0)
2 (6.16)
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Integration of equation (6.10) leads to

κ0mẋ0 +
~
2

(ẋ× ẍ) ξ = −p0 (6.17)

where p0 is an integration constant. This constant p0 describes the time component
of the dynamic system SDd canonical 4-momentum.

Integration of equation (6.8) gives

−κ0m
ẋ√
ẋsẋs

+
~Q
2

(ξ× ẍ)− ~
2

∂Q

∂ẋ
(ẋ× ẍ)ξ +

~
2

d

dτ 0

(Q(ξ × ẋ)) = −p =const (6.18)

where p is the 3-momentum of the dynamic system SDd as a whole.
Using the gauge (6.9) and relations (6.16), we rewrite the equation (6.18) in the

form

−mẋ +
~
2

(ξ × ẍ)

1 + ẋ0

− ~
2

ẋ (2 + ẋ0)

(1 + ẋ0)
2 (ẋ× ẍ)ξ +

~
2

d

dτ 0

(
(ξ × ẋ)

1 + ẋ0

)
= −p (6.19)

If we set ~ = 0 in (6.19), we obtain conventional connection p = mẋ between
the velocity ẋ = dx/dτ 0 and the momentum of a free particle. But the quantum
constant ~ is a coefficient before the highest time derivative, and setting ~ = 0, we
suppress some degrees of freedom.

If these additional degrees of freedom are not excited (or suppressed), the classi-
cal Dirac particle has six degrees of freedom. We shall see that characteristic energy
associated with additional degrees of freedom is of the order of the particle rest
energy m. At low energetic processes (calculation of atomic spectra, quantum elec-
trodynamics) one may neglect these degrees of freedom, remaining only numerical
characteristics (spin, magnetic momentum) of these degrees of freedom. However,
in the case of high energies (ultrarelativistic collisions, structure of elementary par-
ticles), one cannot neglect these degrees of freedom. Of course, using the Dirac
equation, we take into account these additional degrees of freedom automatically.
But it is important also to take into account these additional degrees of freedom in
our interpretation of the high energetic processes.

Transformation and solution of equation (6.18) is rather bulky. Many efforts
were used to prove that the 3-vectors ξ, ẋ, and ẍ are mutually orthogonal and their
modules are constant [9] in the coordinate system, where p = 0. We shall not spend
time for this proof. Instead, we choose the coordinate system in such a way that
p = 0

ξ = {0, 0, ε0} , ε0 = ±1 (6.20)

and impose constraints

ẋ2 = const, (ẋξ) = 0, (ẍξ) = 0, (ẋ× ẍ) ξ = const (6.21)

We use constraints (6.21) in solution of the system of dynamic equations (6.14),
(6.17), (6.19) and show that the constraints (6.21) are compatible with dynamic
equations (6.14), (6.17), (6.19).
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Taking into account (6.21) and (6.15), we introduce new variables

y =
ẋ√

1 + ẋ0

=
ẋ√

1 +
√

1 + ẋ2
, ẋ = y

√
(y2 + 2) (6.22)

ẋ0 =
√

1 + y2 (y2 + 2) = y2 + 1 (6.23)

Introducing designation
y2 = γ − 1 = const, (6.24)

we obtain
ẋ0 =

√
1 + y2 (y2 + 2) = y2 + 1 = γ = const (6.25)

Then at p = 0 the equation (6.19) takes the form

−κ0my (γ + 1) +
~
2
(ξ × ẏ)− ~

2
(γ + 2) ((y × ẏ)ξ)y +

~
2

d

dτ 0

((ξ × y)) = 0 (6.26)

The equation (6.14) takes the form

ξ̇ = −(y × ẏ)× ξ = 0 (6.27)

because of constraints (6.21). In terms of variables y conditions (6.21) have the
form

y2 = γ − 1, (ξy) = 0, (ξẏ) = 0, (yẏ) = 0 (6.28)

where γ is a constant of integration. In accordance with (6.25) and (6.28) we obtain

(y × ẏ)ξ = ε0ω (γ − 1) (6.29)

where ω is an indefinite constant (some angular velocity).
Substituting (6.29) in (6.26), we obtain after simplification

(ξ × ẏ)−
(

1

2
(γ + 2) (γ − 1) ε0ω +

κ0m

~
(γ + 1)

)
y = 0 (6.30)

As far as y2 = γ− 1, the equation (6.29) describes rotation of the vector y with the
angular frequency ω. Equation (6.30) describes rotation of the vector y around the
vector ξ with the angular frequency 1

2
(γ + 2) (γ − 1) ε0ω + κ0m

~ (γ + 1). Equations
(6.29) and (6.30) are compatible, if these frequencies coincide. According to (6.28)
vectors y and ẏ are orthogonal to ξ. Then in accordance with (6.20) the vectors y
and ẏ can be represented in the form

y =
{√

γ − 1 cos Φ,
√

γ − 1 sin Φ, 0
}

(6.31)

ẏ =
{
−

√
γ − 1ω sin Φ,

√
γ − 1ω cos Φ, 0

}
, ω =

dΦ

dτ 0

(6.32)
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By means of (6.31), and (6.32) the equations (6.30) take the form

−ε0ωy1 −
(

1

2
(γ + 2) (γ − 1) ε0ω +

κ0m

~
(γ + 1)

)
y1 = 0 (6.33)

−ε0ωy2 −
(

1

2
(γ + 2) (γ − 1) ε0ω +

κ0m

~
(γ + 1)

)
y2 = 0 (6.34)

Equations (6.33), (6.34) are satisfied, provided

ε0ω +

(
1

2
(γ + 2) (γ − 1) ε0ω +

κ0m

~
(γ + 1)

)
= 0 (6.35)

Solution of (6.35) has the form

ω = −2ε0κ0m

~γ
(6.36)

According to (6.22) and (6.23) the dynamic equation (6.17) takes the form

−p0 = κ0mγ +
~
2

(y × ẏ) ξ (γ + 1) (6.37)

Using relations (6.29) and (6.36) we obtain from (6.37)

−p0 = κ0m

(
γ − γ2 − 1

γ

)
=

κ0m

γ
, κ0 = ±1 (6.38)

Then we obtain for the total mass MDd of the dynamic system SDd.

MDd =
√

p2
0 − p2 = |p0| = m

γ
(6.39)

Note, that writing the relation (6.39), we do not act quite consequently. Writing
the relation (6.39), we suppose that the dynamic equations (6.17) and (6.18) are
relativistically invariant, and solution of equations (6.17), (6.18) for arbitrary p can
be obtained from the solution for p = 0 by means of a corresponding Lorentz trans-
formation. Unfortunately, dynamic equations (6.17), (6.18) are not relativistically
invariant, and for arbitrary p the solution is not a helix, in general, although it is
a helix for p = 0. World line is a helix approximately in the nonrelativistic case,
when |p| ¿ m.

Let us transit from independent variable τ 0 to the independent variable x0 = t.
We have

Ωt = −ε0κ0ωτ 0, −ε0κ0ω = Ωẋ0 = Ωγ =
2m

~γ
, Ω =

2m

~γ2
(6.40)

Returning from variables y to variables ẋ, we obtain instead of (6.31) and (6.32)

dx

dt
=

{√
γ2 − 1

γ
cos (Ωt) ,−

√
γ2 − 1

γ
sin (Ωt) , 0

}
, Ω =

2m

~γ2
(6.41)
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x =

{
~γ

√
γ2 − 1

2m
sin

(
2m

~γ2
t

)
,
~γ

√
γ2 − 1

2m
cos

(
2m

~γ2
t

)
, 0

}
(6.42)

where γ ≥ 1 is an arbitrary constant.
Thus, in the coordinate system, where the canonical momentum four-vector has

the form

Pk = {p0,p} =

{
−κ0m

γ
, 0, 0, 0

}
(6.43)

the world line of the deterministic Dirac particle is a helix, which is described by
the relation

{t,x} = {t, aDd sin (Ωt) , aDd cos (ωDdt) , 0} (6.44)

aDd =
~γ

√
γ2 − 1

2m
, ωDd =

2m

~γ2
(6.45)

It follows from (6.41) that the classical Dirac particle velocity v = dx/dt is
expressed as follows

v2 = 1− 1

γ2
, γ =

1√
1− v2

(6.46)

In other words, the quantity γ is the Lorentz factor of the classical Dirac particle.
We see that the characteristic frequency, connected with the internal degrees of

freedom is 2m/γ2, and the characteristic energy is of the order |−mγ + mγ−1|.
Parameters γ and ωDd as functions of the radius aDd and the Dirac mass m have

the form

γ =

√
1

2

(
1 +

√
1 + ζ2

)
, ωDd =

4m

~
(
1 +

√
1 + ζ2

) ζ =
4maDd

~
(6.47)

7 Discrete space-time geometry

Foundation of quantum mechanics as a statistical description of stochastically mov-
ing particles brings up the question: Why do free microparticles move stochastically?
It appears that the space-time is discrete, and particles of small mass feel this dis-
creteness. As a result the particles of small mass move stochastically. World function
σd of the discrete space-time geometry Gd is restricted by the relation (1.1).

In the nonrelativistic physics the particle state is described as a point in the
phase space of coordinates and momenta. The particle world line is supposed to be
smooth and the particle 4-momentum pk is described by the relation

pk = gkl
dxl

dτ
= gkl lim

dτ→0

xl (τ + dτ)− xl (τ)

dτ
(7.1)

where xl = xl (τ), l = 0, 1, 2, 3 is an equation of the world line. In the relativistic
case the particle state is described by the world line. In Gd a world line cannot be
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smooth, because the limit (7.1) does not exist in Gd. In Gd a smooth world line is
replaced by sequential set of points ...P0, P1, P2, ..., or by a broken line, whose links
are straight segments of the same length

C =
⋃
s

PsPs+1, |PsPs+1| = µ, s = ...0, 1, .. (7.2)

where the length |µ| ≥ λ0, and λ0 is a parameter (elementary length) of the world
function σd, defined by (1.4). The term ”world chain” will be used for such a broken
world line. The quantity µ is the geometric mass of the particle. It is connected
with the usual mass m by the relation

m = bµ (7.3)

where b is some universal constant.
For a free particle the adjacent vectors PsPs+1 and Ps+1Ps+2 are in parallel

(PsPs+1.Ps+1Ps+2) = |PsPs+1| · |Ps+1Ps+2| , s = ...0, 1, .. (7.4)

where the scalar product (PsPs+1.Ps+1Ps+2) is defined by relation

(AB.CD) = σ (A,D) + σ (B,C)− σ (A,C)− σ (B, D) (7.5)

In the geometry of Minkowski, when λ0 → 0, the timelike world chain turns to a
smooth world line. The wobbling of a spacelike world chain (7.2) does not disappear,
because the multivariance of the spacelike vectors equivalence remains at λ0 → 0.

The discrete geometry Gd is a multivariant geometry, and it is the most essential
property of Gd. Furthermore, the discrete geometry is a nonaxiomatizable geometry,
which cannot be constructed on the basis of a finite number of axioms. As any
generalized geometry, the discrete geometry Gd is a generalization of the proper
Euclidean geometry GE.

The proper Euclidean geometry as well as the geometry of Minkowski are contin-
uous geometries. They are described by methods of differential geometry. However,
there may exist discrete geometries, where the distance between any two points of
the space-time is larger, than some elementary length λ0. If characteristic scale of
the problem is much larger, than the elementary length λ0, one may set λ0 = 0
and consider the space-time geometry as a continuous geometry. However, in micro-
cosm, where characteristic scale is of the order of λ0, one should consider a discrete
space-time geometry, because the real space-time geometry may be discrete, and
such a possibility is to be investigated.

At the conventional construction of the Euclidean geometry one uses such con-
cepts as manifold, dimension, coordinate system, linear vector space, which might
be used only in continuous (differential) geometries. A discrete geometry is con-
sidered as a generalization of the proper Euclidean geometry, because it is the only
geometry, whose consistency has been proved. Constructing a discrete geometry as a
generalization of the proper Euclidean geometry, one may not use above-mentioned
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concepts. The only concept, which may be used in the continuous geometry and
in the discrete one, is the distance ρ. But the distance ρ is to be introduced as a
fundamental quantity. In the Riemannian geometry the distance ρ is introduced as
an integral along the geodesic from the infinitesimal distance

ds =
√

gikdxidxk

Such a method of introduction of the distance ρ is inadequate in the discrete ge-
ometry, because it uses infinitesimal distance, which does not exist in the discrete
geometry. Besides, in the case, when there are several geodesics, connecting two
points, one obtains many-valued expressions for the distance or for the world func-
tion. Many-valued world function is inadmissible in a geometry.

To construct a discrete geometry, one needs to use the metric approach to geom-
etry. One represents the proper Euclidean geometry in terms of the distance ρ (or in
terms of the world function σ = 1

2
ρ2) and uses this representation for generalization

of the proper Euclidean geometry GE on the case of a discrete geometry Gd. Such a
replacement of basic concepts of the Euclidean geometry means a logical reloading
of the Euclidean geometry conception. Representation of a geometry in terms of a
world function will be referred to as σ-immanent representation. The σ-immanent
representation of the proper Euclidean geometry GE is always possible.

The distance function ρd of a discrete geometry Gd satisfies the condition (1.1)
It means that in the geometry Gd there are no distances, which are shorter, than
the elementary length λ0. The distance ρd (P, Q) = 0 is admissible. This condition
takes place, if P = Q.

Note, that the condition (1.1) is a restriction on the values of the distance func-
tion, but not on values of its argument (points of Ω), although one considers usually
a discrete geometry as a geometry on a lattice. It is true, that the geometries on a
lattice are discrete geometries (they satisfy the relation (1.1)), but they form a very
special case of the discrete geometries. Such a geometry is essentially a conventional
differential geometry, given on a countable set of points, where the distances are the
same as in the differential geometry, given on a continual set of points. Besides, such
a discrete geometry cannot be uniform and isotropic. A general case of a discrete
geometry takes place, when restrictions are imposed on the admissible values of the
world function (distance function).

The simplest case of a discrete space-time geometry Gd is obtained, if Gd =
{σd, ΩM} is given on the manifold ΩM, where the geometry of Minkowski GM =
{σM, ΩM} is given. The world function σd is chosen in the form (1.4), It is easy
to verify, that ρd =

√
2σd, defined by (1.4) satisfies the constraint (1.1). Such a

discrete geometry is uniform and isotropic as well as the geometry of Minkowski.

8 Metric approach to geometry

There is another circumstance, which prevents from constructing a discrete geome-
try. The proper Euclidean geometry is an axiomatizable geometry. It means, that
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all statements of the proper Euclidean geometry can be deduced from a system of
several axioms (basic statements of the geometry). Usually one considers the axiom-
atizability of a geometry as an inherent property of any geometry. One believes that
there are no nonaxiomatizable geometries. The reason of such a belief is rather sim-
ple. During two thousand years we knew the only geometry - the proper Euclidean
geometry, which is axiomatizable. All differential geometries, constructed as a gen-
eralization of the proper Euclidean geometry, are also axiomatizable. One knows
no other method of a geometry construction other, than the Euclidean method of
the geometry deduction from some system of axioms. All differential geometries are
constructed by means of this method. Mathematicians believe that any geometry
is a logical construction. Such a discipline as the symplectic geometry is used in
dynamics, but not for description of the geometric objects properties. Nevertheless
it is called a geometry, because its structure reminds the structure of the Euclidean
geometry.

In reality any geometry investigates a shape and a mutual disposition of geo-
metrical objects in the space, or in the space-time. This property is an original
property of a geometry. However, one used the only Euclidean method of the geom-
etry construction during two thousand years, and as a result the axiomatizability of
a geometry is considered now as an inherent property of any geometry, whereas a
description of geometrical objects is considered as a secondary property of discipline,
called geometry.

In general, there is a metrical approach to geometry, when a geometry is con-
sidered as a science, investigating a shape and a mutual disposition of geometrical
objects. Such a geometry is known as a metric geometry (metric space), if it uses
the triangle axiom. If the triangle axiom is not used, the geometry is called the
distant geometry [42, 43]. It is supposed, that the distant geometry Gds = {σ, Ω} is
described completely by the world function σ = 1

2
ρ2

σ : Ω× Ω → R, σ (P,Q) = σ (Q,P ) , ∀P, Q ∈ Ω (8.1)

where Ω is the point set, where the geometry is given. The world function σ is
used instead of the distance function ρ, because in the geometry of Minkowski the
distance ρ may be either positive, or pure imaginary, whereas σ = 1

2
ρ2 is always

real.
At the metric approach to geometry, a geometry can be constructed on any point

set (but not necessarily on a manifold) without a use of coordinates. In the metric
space the distance function ρ satisfies additional constraints

ρ (P, Q) ≥ 0, ∀P, Q ∈ Ω, ρ (P,Q) =
√

2σ (P,Q) (8.2)

ρ (P, Q) + ρ (P, R) ≥ ρ (Q,R) , ∀P, Q,R ∈ Ω (8.3)

The condition (8.3) is known as the triangle axiom. This axiom admits one to
introduce a straight line in the metric space as a shortest line between two points.
In the distant geometry, where the constraint (8.3) is absent, one failed to introduce
the straight line in terms of the distance function ρ. Blumental [43] introduced a
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curve as a continuous mapping (0, 1) → Ω. The continuous mapping is an operation,
which cannot be expressed only in terms of the distance function. As a result a purely
metric approach to geometry, when geometry is described completely in terms of the
distance function ρ, failed. The reason of this failure lies in the fact, that Blumental
believed that the straight line has no thickness, whereas in reality in the distant
geometry Gd the straight line is a hollow tube. In reality the distant geometry is
nonaxiomatizable geometry, which cannot be constructed by the Euclidean method.

What is on the bottom of the Euclidean method of the geometry construction?
Let us get outside of this method. One cannot perceive the distance directly. One
can perceive physical bodies. Geometrical object is an abstraction of space-time
properties of a physical body. A physical body, evolving in the space-time, may
pass from one space-time region with the space-time geometry {σ1, Ω1} to another
space-time region with the space-time geometry {σ2, Ω2}. We must have a possibility
to recognize and to identify the same geometrical object in different space-time
geometries. In order, that it should be possible, any geometrical object is to be
described in terms of the distance function ρ and only in terms of ρ. Any geometrical
object is described by its skeleton and its envelope. We consider a simple examples
of geometrical objects. (The general definition of a geometrical object will be given
later).

The simplest geometrical object is a sphere SPP0P1 , determined by two points
P0, P1 (skeleton). The point P0 is a center of the sphere, P1 is some point on the
surface of the sphere. The points {P0, P1} form the sphere skeleton. The surface of
the sphere (its envelope) is a set of points

SPP0P1 = {R|ρ (P0, R) = ρ (P0, P1)} , ρ =
√

2σ (8.4)

The sphere is a hollow geometrical object in the sense, that there are internal points
of the sphere, which do not belong to the sphere surface (envelope).

Another simple geometrical object is an ellipsoid ELF1F2P , determined by three
points F1, F2, P . The points F1, F2 are focuses of the ellipsoid, and the point P is
some point on the surface of the ellipsoid

ELF1F2P = {R|ρ (F1, R) + ρ (F2, R) = ρ (F1, P ) + ρ (F2, P )} , ρ =
√

2σ (8.5)

If F1 6= P ∧ F2 6= P , the ellipsoid ELF1F2P is a hollow geometrical object.
If F1 = P ∨F2 = P , the ellipsoid degenerates into a straight line segment T[P0P1]

T[P0P1] ≡ ELP0P1P1 = ELP0P1P0 = {R|ρ (P0, R) + ρ (P1, R) = ρ (P0, P1)} (8.6)

The degenerate ellipsoid ELP0P1P1 is a straight line segment T[P0P1] by definition.
This name is used, because in the proper Euclidean geometry a degenerate ellipsoid
is a straight line segment. In other geometries the geometric object (8.6) may be
a hollow geometrical object. It means, that it is not one-dimensional point set, as
in the proper Euclidean geometry, but nevertheless we shall refer to it as a straight
line segment.
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The segment T[P0P1] is determined by two points. All points of T[P0P1] are points
of the envelope, which consists of boundary points only. In the proper Euclidean
geometry it is not a hollow geometrical object, because it does not contain internal
points.

Is the straight line segment T[P0P1] a hollow geometrical object in other distant
geometries? It depends on the constraints (8.2),(8.3). If they are satisfied, the
segment T[P0P1] is entire (not hollow). If the distance function ρ does not satisfy the
triangle axiom (8.3) the segment T[P0P1] may be hollow. In other words, the segment
T[P0P1] may be a hollow tube.

Why is the segment entire, if the triangle axiom (8.3) is fulfilled? Let us consider
a closed surface S defined by the relation

S : SP0P1 (R) = 0, SP0P1 (R) = ρ (P0, R) + ρ (P1, R)− ρ (P0, P1) (8.7)

Internal points R′ (points inside the closed surface S) satisfy the relation SP0P1 (R′) <
0. External points R′′ satisfy the relation SP0P1 (R′′) > 0. If the triangle axiom is
fulfilled, it may be written in the form

ρ (P0, R) + ρ (P1, R) ≥ ρ (P0, P1) , ∀P1, P2, R ∈ Ω (8.8a)

It follows from (8.7) and (8.8a), that SP0P1(R
′) ≥ 0, ∀R′ ∈ Ω. It means that the

surface S, which coincides with the segment T[P0P1], cannot contain internal points.
Why it is important, whether or not the segment T[P0P1] is hollow? Geometry

is reduced to construction of geometrical objects and to investigation of their prop-
erties. In the proper Euclidean geometry all geometrical objects are constructed of
blocks (point, straight segment). Blocks are to be simple entire (not hollow) geomet-
rical objects. The segment T[P0P1] is determined by two points, and it is entire in the
proper Euclidean geometry. It may be used as a constructive block for construction
of geometrical objects. For instance, in the proper Euclidean geometry a cube can
be filled by straight segments placed in parallel with the cube edge in such a way,
that any point of a cube belongs to one and only one segment. Such a situation
is impossible, if the blocks are hollow geometrical objects. If the blocks are hollow
tubes, one cannot fill the cube by these tubes in such a way, that any point of a cube
belongs to one and only one tube. It means, that a cube cannot be constructed of
hollow blocks. The same relates to any geometrical object.

The Euclidean method of the geometric object construction is based on the
possibility of construction of any geometrical object from blocks. There is a finite
number of rules, describing the blocks properties, and there is a finite number of
rules for description of the blocks combinations at a construction of a geometrical
object. Euclid formulated these rules in the form of axioms of a logical construction.
Thus, the axiomatics of the proper Euclidean geometry describes the procedure of
a construction of geometrical objects from blocks. If the segment T[P0P1] is entire,
the distant geometry is an axiomatizable geometry, because it can be realized as a
geometry, where any geometric object can be constructed of blocks, i.e. by means
of the Euclidean method.
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If blocks are hollow, they cannot be used for construction of geometrical objects.
In this case the distant geometry is nonaxiomatizable, because in this case one
cannot use the Euclidean method for construction of geometric objects. Formally
the segment T[P0P1] is hollow, if the equivalence relation is intransitive (and the
geometry is multivariant). If the equivalence relation is transitive, the segment
T[P0P1] may be entire.

The constructive block T[P0P1] is a directed object, whose direction is described

by the vector P0P1 =
−−→
P0P1 = {P0, P1}, which is an ordered set of two points. The

point P0 is the origin of the vector, the point P1 is the end of the vector. Any vector
P0P1 is described by its module

|P0P1| = ρ (P0, P1) =
√

2σ (P0, P1) (8.9)

Vectors are directed quantities, and interrelation of two vectors P0P1 and Q0Q1 is
described by an angle ϕ between them. In the proper Euclidean geometry there is
a lot of vectors Q0Q1, which form the angle ϕ 6= 0 with the vector P0P1. However,
in the proper Euclidean geometry there is only one vector Q0Q1 at the point Q0

with fixed length |Q0Q1|, which forms with the vector P0P1 the angle ϕ = 0. By
definition such a vector Q0Q1 is called the vector, which is parallel (Q0Q1·P0P1)
to the vector P0P1 .

Instead of the angle ϕ the mutual direction of two vectors P0P1 and Q0Q1 may
be described by the scalar product (Q0Q1.P0P1) of these vectors, defined by the
relation

(P0P1.Q0Q1) = |P0P1| · |Q0Q1| cos ϕ (8.10)

In the proper Euclidean geometry the definition of the scalar product may be ex-
pressed in terms of the world function

(P0P1.Q0Q1) = σ (P0, Q1) + σ (P1, Q0)− σ (P1, Q1)− σ (P0, Q0) (8.11)

As far as the definition of the scalar product is produced in terms of the world
function, this definition may be used for any distant geometry.

Then condition of the vectors parallelism is obtained from (8.10) at ϕ = 0. It is
written in the form

(Q0Q1 · P0P1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| (8.12)

In the proper Euclidean geometry all vectors P0P1,P0P
′
1, P0P

′′
1, which are parallel

to vector Q0Q1, are parallel between themselves. Such a situation is rather special.
It is connected with a degenerate character of the proper Euclidean geometry. In the
distant geometry vectors P0P1,P0P

′
1, P0P

′′
1, which are parallel to vector Q0Q1, are

not parallel between themselves, in general. This circumstance generates hollowness
of straight segments T[P0P1]. It depends on properties of the world function σ, which
describes a distant geometry completely.

In the proper Euclidean geometry two vectors P0P1 and Q0Q1 are equivalent by
definition, if they are parallel (P0P1 · Q0Q1) and their lengths are equal |P0P1| =
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|Q0Q1|

(P0P1eqvQ0Q1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| ∧ |P0P1| = |Q0Q1| (8.13)

This definition of two vectors equivalency (equality) together with the definitions
(8.9), (8.11) formulates the equivalence of two vectors in terms of the world function
and only in these terms. It does not refer to a dimension, to a coordinate system
and other means of description. This definition of two vectors equivalence should
be used in any distant geometry.

There are such distant geometries, where the straight segments T[P0P1] are hol-
low tubes. Then the definition (8.13), (8.12) appears to be intransitive, and the
distant geometry appears to be nonaxiomatizable. Some mathematicians object,
that the definition (8.13), (8.11) cannot be used as an equivalence relation, because
the equivalence relation is transitive by definition. They insist, that one should use
another term for the definition (8.13), (8.11), (for instance, general equivalency).
The reason of such an objection lies in the fact, that the mathematicians dealt only
with axiomatizable geometries, which are logical constructions. Indeed, if one uses
a logical construction, one can deduce conclusions, only if the equivalence relation
is transitive, and from a v b and b v c it follows, that a v c. If the the equivalence
relation has not this property, one cannot deduce corollaries of axioms and theo-
rems. Thus, if one insists on the transitivity of the equivalence relation, one insists
on impossibility of nonaxiomatizable geometries, in particular, on impossibility of
discrete space-time geometries, where the straight segments T[P0P1] are hollow tubes.
We believe that imperfection of the description methods cannot be a reason of the
discrete geometry discard. Nonaxiomatizability of the discrete geometry Gd does
not mean that Gd does not exist .

The transitivity of the equivalence relation has been obtained from our experi-
ence of work with axiomatizable geometries (Euclidean geometry and its modifica-
tions). We have no authority to generalize this property to all space-time geometries.
Whether or not the real space-time geometry is discrete, is a question of experimen-
tal data, but not a question of mathematical scholasticism. Another problem lies
in the fact, that we could construct only axiomatizable geometries, and we could
not construct discrete geometries. As a result we constructed only geometries on
a lattice, which are not rigorous discrete geometries. How to construct discrete
(nonaxiomatizable) geometries, we consider a few later.

9 Description of geometric objects

If the distant geometry includes indefinite metrics (as in the geometry of Minkowski),
the condition (8.2) is to be omitted, and description of the geometry is produced
in terms of the world function. The geometry described completely by the world
function (8.1) will be referred to as a physical geometry.

A geometrical object is a geometrical image of a physical body. Any geometrical
object is some subset of points in the space-time. However, geometrical object is

40



not an arbitrary set of points. Geometrical object is to be defined in the physical
geometry in such a way, that similar geometrical objects (which are images of similar
physical bodies) could be recognized in different space-time geometries.

Definition 1: A geometrical object gPn,σ of the geometry G = {σ, Ω} is a subset
gPn,σ ⊂ Ω of the point set Ω. This geometrical object gPn,σ is a set of roots R ∈ Ω
of the function FPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , FPn,σ : Ω → R (9.1)

where FPn,σ depends on the point R via world functions of arguments {Pn, R} =
{P0, P1, ...Pn, R}

FPn,σ : FPn,σ (R) = GPn,σ (u1, u2, ...us) , s =
1

2
(n + 1) (n + 2) (9.2)

ul = σ (wi, wk) , i, k = 0, 1, ...n + 1, l = 1, 2, ...
1

2
(n + 1) (n + 2) (9.3)

wk = Pk ∈ Ω, k = 0, 1, ...n, wn+1 = R ∈ Ω (9.4)

Here Pn = {P0, P1, ..., Pn} ⊂ Ω are n + 1 points which are parameters, determining
the geometrical object gPn,σ

gPn,σ = {R|FPn,σ (R) = 0} , R ∈ Ω, Pn ∈ Ωn+1 (9.5)

FPn,σ (R) = GPn,σ (u1, u2, ...us) is a function of 1
2
(n + 1) (n + 2) arguments uk and

of n + 1 parameters Pn. The set Pn = {P0, P1, ...Pn} ∈ Ωn+1 of the geometric
object parameters will be referred to as the skeleton of the geometrical object. The
subset gPn,σ ⊂ Ω will be referred to as the envelope of the skeleton. The skeleton is
an analog of a frame of reference, attached rigidly to a physical body. Tracing the
skeleton motion, one can trace the motion of the physical body. When a particle is
considered as a geometrical object, its motion in the space-time is described by the
skeleton Pn motion. At such an approach (the rigid body approximation) the shape
of the envelope is of no importance.

Remark: An arbitrary subset Ω′ of the point set Ω is not a geometrical object,
in general. It is supposed, that physical bodies may have only a shape of a geo-
metrical object, because only in this case one can identify identical physical bodies
(geometrical objects) in different space-time geometries.

Existence of the same geometrical objects in different space-time regions, having
different geometries, brings up the question on equivalence of geometrical objects in
different space-time geometries. Such a question did not brought up before, because
one does not consider such a situation, when a physical body moves from one space-
time region to another space-time region, having another space-time geometry. In
general, mathematical technique of the conventional space-time geometry (differen-
tial geometry) is not applicable for simultaneous consideration of several different
geometries of different space-time regions.

We can perceive the space-time geometry only via motion of physical bodies in
the space-time, or via construction of geometrical objects corresponding to these
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physical bodies. As it follows from the definition 1 of the geometrical object, the
function GPn,σ as a function of its arguments uk, k = 1, 2, ...n (n + 1) /2 (of world
functions of different points) is the same in all physical geometries. It means, that
a geometrical object O1 in the geometry G1 = {σ1, Ω1} is obtained from the same
geometrical object O2 in the geometry G2 = {σ2, Ω2} by means of the replacement
σ2 → σ1 in the definition of this geometrical object.

Definition 2: Geometrical object gP ′n,σ′ ( P ′n = {P ′
0, P

′
1, ..P

′
n}) in the geometry

G ′ = {σ′, Ω′} and the geometrical object gPn,σ ( Pn = {P0, P1, ..Pn}) in the geometry
G = {σ, Ω} are similar geometrical objects, if

σ′ (P ′
i , P

′
k) = σ (Pi, Pk) , i, k = 0, 1, ..n (9.6)

and the functions G′
P′n,σ′ for gP ′n,σ′ and GPn,σ for gPn,σ in the formula (9.2) are the

same functions of arguments u1, u2, ...us

G′
P′n,σ′ (u1, u2, ...us) = GPn,σ (u1, u2, ...us) (9.7)

In this case

ul ≡ σ (Pi, Pk) = u′l ≡ σ′ (P ′
i , P

′
k) , i, k = 0, 1, ...n, l = 1, 2, ..n (n + 1) /2 (9.8)

The functions F ′
P ′n,σ′ for gP ′n,σ′ and FPn,σ for gPn,σ in the formula (9.2) have the same

roots, if the relation (9.7) is fulfilled. As a result one-to-one connection between the
geometrical objects gP ′n,σ′ and gPn,σ arises.

As far as the physical geometry is determined by its geometrical objects construc-
tion, a physical geometry G = {σ, Ω} can be obtained from some known standard
geometry Gst = {σst, Ω} by means of a deformation of the standard geometry Gst.
Deformation of the standard geometry Gst is realized by the replacement σst → σ
in all definitions of the geometrical objects in the standard geometry. The proper
Euclidean geometry GE is an axiomatizable geometry. It has been constructed by
means of the Euclidean method as a logical construction. Simultaneously the proper
Euclidean geometry is a physical geometry. It may be used as a standard geometry
Gst. Construction of a physical geometry as a deformation of the proper Euclidean
geometry will be referred to as the deformation principle [44, 45]. The most phys-
ical geometries are nonaxiomatizable geometries. They can be constructed only by
means of the deformation principle.

10 General geometric relations

Describing a physical geometry in terms of the world function, one should distin-
guish between general geometric relations and specific geometric relations. The
general geometric relations are definitions of the proper Euclidean geometry, which
are written in terms and only in terms of the world function. The general geometric
relations are valid for any physical geometry.
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The first general geometric definition is the definition of the scalar product of
two vectors (8.11). Definition of the two vector equivalence (8.13) is also a general
geometric relation.

Linear dependence of n vectors P0P1,P0P2, ...P0Pn is defined by the relation,

Fn (Pn) = 0, Fn (Pn) ≡ det ||(P0Pi.P0Pk)|| , i, k = 1, 2, ...n (10.1)

where Pn = {P0, P1, ...Pn} and Fn (Pn) is the Gram’s determinant. Vanishing of the
Gram’s determinant Fn (Pn) is the necessary and sufficient condition of the linear
dependence of n vectors. Condition of linear dependence is considered usually as
properties of the linear vector space Ln, because it is defined via operations in
Ln. It seems rather meaningless to use it, if the linear vector space cannot be
introduced. Nevertheless, the relation (10.1) written as a general geometric relation
describes some general geometric properties of vectors, which are transformed to the
property of linear dependence in the proper Euclidean geometry . In particular, the
metric dimension of the proper Euclidean geometry is defined in terms of the world
function by means of the relations of the type (10.1) as a maximal number of linear
independent vectors, which is possible in the Euclidean space. This circumstance
seems to be rather unexpected, because in conventional presentation of the Euclidean
geometry the geometry dimension is postulated in the beginning of the presentation.

As we have seen, a definition of geometrical objects in the form of general geo-
metric relations (i.e. in terms of the world function) is necessary to recognize the
same physical body (and corresponding geometrical object) in different space-time
geometries.

The general geometric relations are parametrized by the form of the world func-
tion σ. Changing the form of the world function σ, one obtains the general geometric
relations at a new value of the parameter σ (new form of the world function).

11 Specific properties of the n-dimensional

Euclidean space

Along of general geometric properties, describing mainly definitions of the linear vec-
tor space, there are special geometric relations, describing properties of the world
function. For instance, there are relations, which are necessary and sufficient con-
ditions of the fact, that the world function σ = σE is the world function of n-
dimensional Euclidean space. They have the form [46]:

I. Definition of the dimension:

∃Pn ≡ {P0, P1, ...Pn} ⊂ Ω, Fn (Pn) 6= 0, Fk

(
Ωk+1

)
= 0, k > n (11.1)

where Fn (Pn) is the n-th order Gram’s determinant (10.1) Vectors P0Pi, i =
1, 2, ...n are basic vectors of the rectilinear coordinate system Kn with the origin at
the point P0. The metric tensors gik (Pn), gik (Pn), i, k = 1, 2, ...n in Kn are defined
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by the relations

k=n∑

k=1

gik (Pn) glk (Pn) = δi
l, gil (Pn) = (P0Pi.P0Pl) , i, l = 1, 2, ...n (11.2)

Fn (Pn) = det ||gik (Pn)|| 6= 0, i, k = 1, 2, ...n (11.3)

II. Linear structure of the Euclidean space:

σ (P,Q) =
1

2

i,k=n∑

i,k=1

gik (Pn) (xi (P )− xi (Q)) (xk (P )− xk (Q)) , ∀P, Q ∈ Ω (11.4)

where coordinates xi (P ) , xi (Q) , i = 1, 2, ...n of the points P and Q are covariant
coordinates of the vectors P0P, P0Q respectively in the coordinate system K. The
covariant coordinates are defined by the relation

xi (P ) = (P0Pi.P0P) , i = 1, 2, ...n (11.5)

III: The metric tensor matrix glk (Pn) has only positive eigenvalues gk

gk > 0, k = 1, 2, ..., n (11.6)

IV. The continuity condition: the system of equations

(P0Pi.P0P) = yi ∈ R, i = 1, 2, ...n (11.7)

considered to be equations for determination of the point P as a function of coordi-
nates y = {yi}, i = 1, 2, ...n has always one and only one solution.

Conditions I – IV contain a reference to the dimension n of the Euclidean space,
which is defined by the relations (11.1). All relations I – IV are written in terms
of the world function. They are constraints on the form of the world function of
the proper Euclidean geometry. Constraints (11.1), determining the dimension via
the form of the world function, look rather unexpected. They contain a lot of
constraints imposed on the world function of the proper Euclidean geometry, and
they are necessary. At the conventional approach to geometry one uses a very simple
supposition: ”Let the dimension of the Euclidean space be n.” Conventionally one
uses this very short postulate instead of numerous constraints (11.1), used in the
σ-representation (description in terms of the world function) of a geometry.

In the vector representation of the proper Euclidean geometry, which is based on
a use of the linear vector space, the dimension is considered as a primordial property
of the linear vector space and as a primordial property of the Euclidean geometry.
Situation, when the geometry dimension is different at different points of the space
Ω, or when the dimension is indefinite, is not considered. In the vector representation
of the Euclidean geometry one does not distinguish between the general geometric
relations and the specific relations of the geometry.
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Instead of constraints (11.1) – (11.7) one may use an explicit form of the world
function

σE (x, x′) =
1

2

k=n∑

k=1

(
xk − x′k

)2
(11.8)

where xk, x′k ∈ R, k = 1, 2, ...n are Cartesian coordinates of points P and P ′ respec-
tively. The relation (11.8) satisfies all constraints (11.1) – (11.7). It uses concepts of
dimension and of coordinates as primordial concepts of geometry. Using the world
function only in such an explicit form, one cannot imagine a generalized geome-
try without such concepts as a dimension and a coordinate system, although these
concepts are only means of a geometry description.

In general, after the logical reloading to σ-representation the proper Euclidean
geometry looks rather unexpected. Some concepts look very simple in the vector
representation. The same concepts look complicated in the σ-representation and
vice versa. As a result the proper Euclidean geometry in the σ-representation is
perceived hardly.

In the vector representation one has several fundamental concepts and quantities:
dimension, coordinate system, linear dependence, whereas in the σ-representation
there is only one fundamental quantity: world function. The dimension, the co-
ordinate system and the linear dependence are derivative quantities and concepts.
Agreement between these quantities is achieved in any physical geometry, because
they are defined as some attributes of the world function.

12 Skeleton conception of particle dynamics

An elementary particle is a physical body. In the discrete space-time geometry
a position of a physical body is described by its skeleton Pn = {P0, P1, ..Pn}. Of
course, such a description of a physical body position may be used in any space-time
geometry. The skeleton is an analog of the frame of reference attached rigidly to the
particle (physical body). Tracing the skeleton motion, one traces the physical body
motion. Direction of the skeleton displacement is described by the leading vector
P0P1.

The skeleton motion is described by a world chain C of connected skeletons

C =
s=+∞⋃
s=−∞

P(s)
n (12.1)

Skeletons P(s)
n of the world chain are connected in the sense, that the point P1 of a

skeleton is a point P0 of the adjacent skeleton. It means

P
(s)
1 = P

(s+1)
0 , s = ...0, 1, ... (12.2)

The vector P
(s)
0 P

(s)
1 = P

(s)
0 P

(s+1)
0 is the leading vector, which determines the direc-

tion of the world chain. The case (7.2), when the skeleton P1 = {Ps, Ps+1} of a
pointlike particle is described by two points is a special case of (12.1).
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If the particle motion is free, the adjacent skeletons are equivalent

P(s)
n eqvP(s+1)

n : P
(s)
i P

(s)
k eqvP

(s+1)
i P

(s+1)
k , i, k = 0, 1, ...n, s = ..0, 1, ..

(12.3)

If the particle is described by the skeleton P(s)
n , the world chain (12.1) has n(n+1)/2

invariant quantities

µik =
∣∣∣P(s)

i P
(s)
k

∣∣∣
2

= 2σ
(
P

(s)
i , P s

k

)
, i, k = 0, 1, ...n, s = ...0, 1, ... (12.4)

which are constant along the whole world chain.
Equations (12.3) form a system of n (n + 1) difference equations for evolution

of nD coordinates of n skeleton points {P1, ..Pn}, where D is the dimension of the
space-time. The number of dynamical variables, which are liable for determination
of the world chain, distinguishes, in general, from the number of dynamic equations.
It is the main difference between the skeleton conception of particle dynamics and
the conventional conception of particle dynamics, where the number of dynamic
variables coincides with the number of dynamic equations.

In the case of pointlike particle, when n = 1, D = 4, the number of equations
ne = 2, whereas the number of variables nv = 4. The number of equations is less,
than the number of dynamic variables. In the discrete space-time geometry (1.4) the
position of the adjacent skeleton is not determined uniquely. As a result the world
chain wobbles. In the nonrelativistic approximation a statistical description of the
stochastic world chains leads to the Schrödinger equations [10], if the elementary
length λ0 has the form λ2

0 = ~/bc, where ~ is the quantum constant, c is the speed
of the light and b is a universal constant, connecting the particle mass m with the
length (geometric mass) µ of the world chain link

m = bµ

Dynamic equations (12.3) are difference equations. At the large scale, when one
may go to the limit λ0 = 0, the dynamic equations (12.3) turn to the differential
dynamic equations. In the case of pointlike particle (n = 1) and of the Kaluza-
Klein five-dimensional space-time geometry these equation describe the motion of
a charged particle in the given electromagnetic field. One can see in this example,
that the space-time geometry ”assimilates” the electromagnetic field. It means that
one may consider only a free particle motion, keeping in mind, that the space-time
geometry can ”assimilate” all force fields.

Dynamic equations (12.3) realize the skeleton conception of particle dynamics
in the microcosm. The skeleton conception of dynamics distinguishes from the
conventional conception of particle dynamics in the relation, that the number of
dynamic equations may differ from the number of dynamic variables, whose solution
is to be determined. In the conventional conception of particle dynamics the number
of dynamic equations (first order) coincides always with the number of dynamic
variables, which are to be determined. As a result the motion of a particle (or of
an averaged particle) appears to be deterministic. In the case of quantum particles,
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whose motion is stochastic (indeterministic), the dynamic equations are written for
a statistical ensemble of indeterministic particles (or for the statistically averaged
particle).

In the conventional conception of dynamics one can obtain dynamic equation
for the statistically averaged particle (i.e. statistical ensemble normalized to one
particle), but there are no dynamic equations for a single stochastic particle. In
the skeleton conception of the particle dynamics there are dynamic equations for a
single particle. These equations are many-valued (multivariant), but they do exist.
In the conventional conception of the particle dynamics one can derive dynamic
equations for the statistically averaged particle, which are a kind of equations for a
fluid (continuous medium). But one cannot obtain dynamic equations for a single
indeterministic particle [7].

The skeleton conception of the particle dynamics realizes a more detailed de-
scription of elementary particle. One may hope to obtain some information on the
elementary particle structure.

We have now only two examples of the skeleton conception application. Consid-
ering compactification in the 5-dimensional discrete space-time geometry of Kaluza-
Klein, and imposing condition of uniqueness of the world function, one obtains that
the value of the electric charge of a stable elementary particle is restricted by the ele-
mentary charge [47]. This result has been known from experiments, but it could not
be explained theoretically, because in the continuous space-time geometry nobody
considers the world function as a fundamental quantity, and one does not demand
its uniqueness.

Another example concerns structure of Dirac particles (fermions). Considera-
tion in framework of skeleton conception [48] shows, that a world chain of a fermion
is a (spacelike or timelike) helix with timelike axis. The averaged world chain of
a free fermion is a timelike straight line. The helical motion of a skeleton gener-
ates an angular moment (spin) and magnetic moment. Such a result looks rather
reasonable. In the conventional conception of the particle dynamics the spin and
magnetic moment of a fermion are postulated without a reference to its structure.
Thus, deterministic model of the Dirac particle gives a more detailed information on
arrangement of the Dirac particle. In the classical model the spin and the magnetic
moment are axiomatic quantities containing quantum constant. The classical model
gives no information on arrangement of spin and magnetic moment.

To obtain the helical world chain in the skeleton conception, one consider space-
time geometry Gg described by the quasi-discrete world function

σg = σM + d (σM) , d (σM) = λ2
0f

(
σM

σ0

)
, f (x) =





1 if x ≥ 1
x3 if −1 < x < 1
−1 if x ≤ −1

(12.5)
where d (σM) is a distortion describing deflection of the world function σg from
the world function σM of the geometry of Minkowski GM. The quantity λ0 is the
elementary length and σ0 is some constant. The geometry Gg does not pretend to
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be a real space-time geometry. The geometry Gg is a granulated geometry, i.e. Gg is
the space-time geometry, which is discrete only partly. It is considered as a possible
space-time geometry, where the particle world chain may be a helix. The particle
skeleton consists of three points P2 = {P0, P1, P2}. The leading vector P0P1 may
be timelike or spacelike. The vector P0P2 is timelike. It is directed along the helix
axis. The vectors P0P1 and P0P2 satisfy the restrictions

∣∣|P0P1|2
∣∣ < σ0, |P0P2|2 < σ0 (12.6)

Under these restrictions the world chain wobbles, but the wobbling amplitude can
be restricted, even if the vector P0P1 is spacelike. Details of this investigation may
be found in [48].

13 Tachyons

Tachyons are particles with spacelike world chain. They were not detected experi-
mentally and they are not envisaged by the Standard model of elementary particles.
Impossibility of the tachyon existence is conditioned by a usage of linear vector space
operations in the case, when they are not adequate. Operations of the linear vector
space are applied to spacelike vectors of the space-time geometry of Minkowski. It
is a mistake, because the equivalence relation is intransitive and multivariant for
spacelike vectors in GM. For instance, all vectors {r, r cos φ, r sin φ, z}, where r and
φ are arbitrary number, are equivalent to the vector {0, 0, 0, z}, but they are not
equivalent between themselves. It is a reason, why the tachyon world chain wob-
bles with infinite amplitude. Such a tachyon cannot been detected because of this
wobbling. Impossibility of a single tachyon detection does not mean that tachyons
do not exist. A single tachyon cannot be detected, but the tachyon gas may be
detected by its gravitational field. Properties of the the tachyon gas are such, that
the tachyon gas is the best candidate for the dark matter [49, 50].

According to (7.2) the world chain for two-point skeleton P1 = {P0, P1} have the
form

C =
⋃
s

PsPs+1, |PsPs+1| = µ = const, s = ...0, 1, 2, ... (13.1)

The adjacent vectors PsPs+1 and Ps+1Ps+2 are equivalent (PsPs+1eqvPs+1Ps+2)
for a free particle. The equivalence conditions (7.4), (7.5) can be written in the form

σ (Ps, Ps+2) = 4σ (Ps, Ps+1) , σ (Ps, Ps+1) = σ (Ps+1, Ps+2) (13.2)

s = 0,±1,±2, ...

If there exist the limit µ → 0, the world chain (13.1) turns into a smooth world line.
Keeping in mind that world function σ (Ps, Ps+1) = 1

2
ρ2 (Ps, Ps+1), where ρ is the

distance between the points Ps and Ps+1, one can see, that in the proper Euclidian
geometry GE the relation (13.2) describes the rule of the straight line construction
by means of only compasses.
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In the case of tachyon σ (Ps, Ps+1) < 0 and µ is imaginary µ2 = − |µ2|. We
consider three adjacent points P0, P1, P2 of the world chain

P0 = {x0,x} , P1 = {x0 + p0,x + p} , P2 = {x0 + 2p0 + α0,x+2p + α} (13.3)

The 4-vector α = {α0,α} is a discrete analog of the acceleration vector. We write
equations (13.2) for the points (13.3). The quantities x = {x0,x} and {x0 + p0,x + p}
are supposed to be given, and the four components of the 4-vector α = {α0,α} are
to be determined from two equations (13.2) (acceleration is determined from the
dynamic equations).

One considers the space-time geometry with the world function

σ (x, x′) =
1

2

((
c2 − 2V (y)

)
(x0 − x′0)

2 − (x− x′)2
)

, y =
x + x′

2
(13.4)

where {x0,x} = {x0, x1, x2, x1} are coordinates in some inertial coordinate system,
V = V (x) is the gravitational potential (V ¿ c2).

One obtains the following nonunique solution [49, 50]

α‖ =
r
√

c2 − 2V√
(v2 − c2 + 2V )

, v =
p

p0

(13.5)

α⊥1 = r cos φ, α⊥2 = r sin φ v =
p

p0

=
p
√

(c2 − 2V )√
p2 − |µ|2

(13.6)

α0 =
αp

p0 (c2 − 2V )
=

p

p0

(
r√

(v2 − c2 + 2V ) (c2 − 2V )

)
(13.7)

where r, φ are arbitrary real numbers r ≥ 0. The length |α| of multivariant 3-vector
α is of the order r and components of α are defined by the relations

α‖ = p
(αp)

p2
, α⊥ = α−α‖, α2

‖ =
(αp)2

p2
, α‖ =

αp

p
, p = |p| (13.8)

Here α‖ is the component of 3-vector α which is in parallel with the 3-vector p,
whereas α⊥ is the component of 3-vector α, which is perpendicular to the 3-vector
p. As far as the quantity r may be infinite, the wobbling of the tachyon world chain
may have infinite amplitude.

Averaging over r and φ, one obtains macroscopic parameters of the tachyon gas
(the mean components of the tachyon gas velocity) [50].

〈
u‖

〉
=

〈
p
√

c2 − 2V

r

〉
= 0, 〈u⊥〉 = 0 (13.9)

〈
u2
⊥
〉

=

〈∣∣∣∣
α⊥
α0

∣∣∣∣
2
〉

=

〈
r2

r2

(
c2 − 2V

)〉
= c2 − 2V (13.10)
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〈
u2
‖
〉

=
〈
u‖

〉2
= 0,

〈
u2

〉
=

〈
u2
‖
〉

+
〈
u2
⊥
〉

= c2 − 2V (13.11)

One can see from (13.9) - (13.11) that results for
〈
u‖

〉
, 〈u⊥〉,

〈
u2
‖
〉
, 〈u2

⊥〉 do not

depend on the geometric mass µ of tachyon.
The energy-momentum tensor does not depend on µ also [50]

T 00 = ρ, T α0 = T 0α = ρ 〈uα〉 (13.12)

T αβ = ρ 〈uα〉 〈uβ
〉

+ Pαβ, α, β = 1, 2, 3 (13.13)

Pαβ =
1

2
ρ

(
δαβ − 〈uα〉 〈uβ

〉

〈u〉2
)

(
c2 − 2V − 〈u〉2) (13.14)

In other words, macroscopic parameters of the tachyon gas are the same, as for usual
gas of very high pressure. One may work with the tachyon gas as with usual gas,
whose molecules cannot be detected. One can detect only the gravitational field of
the tachyon gas.

14 Tachyon world chain with two-point skeleton

We investigate now, whether a world chain with a spacelike leading vector may form
a helix with timelike axis. If it is possible, then we try to investigate, under which
world function such a situation is possible. We consider the world function σg of the
form

σg = σM +
λ2

0

2
f

(
σM

σ0

)
, f (x) =

{
sgn (x) if |x| > 1

Cx + εg (x) if |x| ≤ 1
, (14.1)

σ0 = const > 0, g (x) = −g (−x) , 0 ≤ ε ¿ 1 (14.2)

where C is a constant, which is determined from the relation

C + εg (1) = 1

Such a choice of the space-time geometry does not pretend to a real space-time.

This is only a model, which is easy for investigation. The function f
(

σM

σ0

)
should

be determined from the condition that the world chain with spacelike leading vectors
P

(s)
0 P

(s)
1 forms a helix with timelike axis. The shape of the chain is determined by

leading vectors.
To estimate the form of σg as a function of σM at σM < σ0, it is useful to

consider the world chain, consisting only of spacelike leading vectors P0P1, P1P2,
P2P3,...Other vectors of the skeleton will be considered later, when one needs to
reduce the chain wobbling. The chain describes the free particle motion, and its
links satisfy the equations (12.3). We suppose that the chain is a helix with timelike
axis in the space-time. Let the points ...P0, P1, ... have the coordinates

Pk = {kl0, R cos (kϕ) , R sin (kϕ) , 0} , k = ...0, 1, 2, ... (14.3)
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All points (14.3) lie on a helix with timelike axis. The quantities R, l0, ϕ are param-
eters of the chain.

We investigate, if it is possible such a space-time geometry (14.1), that the world
chain, consisting of connected vectors P0P1, P1P2, P2P3,... form a helix with the
radius R. The parameters l0, l1 = 2R sin ϕ

2
are small in the sense, that

|l0| , |l1| <
√

2σ0, l1 = 2R sin
ϕ

2
(14.4)

To obtain connection between parameters l0, l1, ϕ, it is sufficient to solve equations,
connecting adjacent leading vectors P0P1, P1P2. The dynamic equations have the
form

(P0P1.P1P2)g = |P0P1|2g (14.5)

|P0P1|2g = |P1P2|2g (14.6)

Here index ”g” means that the quantities are calculated in the space-time geometry
Gg, whose world function σg is chosen in the form (14.1) where g is some function
g (x) = −g (−x), x ∈ (−1, 1) and ε ¿ 1.

We are to verify that two adjacent vectors P0P1 and P1P2 satisfy the relations
(14.5), (14.6), if

P0 = {0, 0, 0, 0} , P1 = {l0, l1, 0, 0} , P2 = {2l0, l1 cos ϕ, l1 sin ϕ, 0} (14.7)

and l20 < l21. If parameter l1 = 2R sin ϕ
2
, the points (14.7) correspond to three points

of the helix (14.3). It is sufficient to verify, that the points (14.7) satisfy equations
(14.5), (14.6), because in this case all other pairs of adjacent points (14.3) will satisfy
equations of the form (14.5), (14.6).

It is important to keep in mind that the vectors

P0P1 = {l0, l1, 0, 0} , P1P2 = {l0, l1 (cos ϕ− 1) , l1 sin ϕ, 0} (14.8)

are not unique solution of the equations (14.5), (14.6). There is a lot of other
solutions, which lead to unpredictable wobbling of the world chain (14.3). Amplitude
of this wobbling is infinite. The world chain of a pointlike particle, described by two-
point skeleton P2 = {P0, P1} with spacelike vector P0P1, is unobservable, because it
is impossible to trace such a world chain. One cannot trace the world chain, because
the spatial distance between points Ps and Ps+1 may be infinite in any coordinate
system. It means that the statement of the relativity theory on impossibility of
the tachyons existence is strongly overstated. Tachyons may exist, but they are
unobservable.

Considering equations (14.5), (14.6), we write them in the Minkowski space-time,
setting

σg (P0, P1) = σM (P0, P1) + d (P0, P1) , d (P0, P1) ≡ λ2
0

2
f

(
σM (P0, P1)

σ0

)
(14.9)
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Then equations (14.5), (14.6) take the form

(P0P1.P1P2)M + w (P0, P1, P1, P2) = |P0P1|2M + 2d (P0, P1) (14.10)

|P0P1|2M = |P1P2|2M (14.11)

where

w (P0, P1, P3, P4) = d (P0, P4) + d (P1, P3)− d (P0, P3)− d (P1, P4) (14.12)

Dynamic equations (14.10), (14.11) may be treated as a description of the particle
motion in the space-time geometry of Minkowski under influence of force fields
w and d. In other words, we pass from description in Gg to description in the
Minkowski space-time geometry GM, introducing additional force fields, generated
by the geometry Gg. Such a passage admits one to use conventional mathematical
technique of the Minkowski geometry.

Further we shall use the scalar product only in the space-time of Minkowski.
Index ”M” will be omitted for brevity. We present points (14.7) in the form

P0 = {0, 0, 0, 0} , P1 = l, P2 = l+q + α (14.13)

P0P1 = l, P1P2 = q + α, P0P2 = l + q + α (14.14)

Here
l = {l0, l1, 0, 0} , q = {l0, l1 cos ϕ, l1 sin ϕ, 0} (14.15)

α = {α0, α1, α2, α3} = {α0, α} (14.16)

Vector α describes wobbling of the point P2 near the ”helical” position of the point
P2 = l + q.

To determine the form of the world function , we set α = 0 in (14.13), (14.14).
For |P0P1|2, |P1P2|2, |P0P2|2 and w in (14.10) one obtains dynamic equations

|P0P1|2M = |P1P2|2M = 2σM (P0, P1) = l20 − l21 ≡ l2, l20 < l21 (14.17)

|P0P2|2M = 4l2 + 4l21 sin2 ϕ

2
, l2 < 0, l20, l

2
1 < σ0 (14.18)

w (P0, P1, P1, P2) =
λ2

0

2

(
f

(
2l21 sin2 ϕ

2
+ 2 (l20 − l21)

σ0

)
− 2f

(
l20 − l21
2σ0

))
(14.19)

Setting
l2 = l20 − l21 = −2νσ0, ν > 0 (14.20)

a =
2l21
σ0

sin2 ϕ

2
, κ =

σ0

λ2
0

(14.21)

dynamic equation (14.5) may be written in the form

aκ + f (a− 4ν) = −4f (ν) (14.22)
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Here the function f is an antisymmetric function, defined by the relation (14.1).
Dynamic equation (14.6) transforms to the identity.

After a use of (14.1) equation (14.22) turns into

a (κ + 1)− εg (1)− εg (4ν − a) + 4εg (ν) = 0 (14.23)

a =
ε (g (4ν)− 4g (ν))

κ + 1− εg (1)− εg′ (4ν)
=

ε (g (4ν)− 4g (ν))

κ + 1
+ O

(
ε2

)
(14.24)

It follows from (14.24), that a may be a small quantity, if ε ¿ 1. According to
(14.21) a must be positive. It is possible, if

g (4ν) > 4g (ν) , ν > 0, 0 < ε ¿ 1 (14.25)

According to (14.4) and (14.21) one obtains

R =
l1

2 sin ϕ
2

=
l21√
2aσ0

=
l1√
ε

l1√
2σ0

√
1 + σ0

λ2
0√

(g (4ν)− 4g (ν))
(14.26)

It means that the radius R of helix may be macroscopic, if ε is small enough.
The result obtained

P1P2 = q, P0P2 = l + q (14.27)

corresponds to position of the point P2 on the helix (14.3). However, there are
another solutions of equations (14.5), (14.6), where the point P2 is described by
relations (14.13) and vectors (14.14)

P1P2 = q + α, P0P2 = l + q + α (14.28)

Here vector α describes wobbling of the point P2. It satisfies the dynamic equations

l2 = (q + α)2 (14.29)

(l.q + α) + w (P0, P1, P1, P2) = l2 + 2d

(
l2

2

)
(14.30)

which are reduced to the form

α2 + 2 (q.α) = 0 (14.31)

2l21 sin2 ϕ

2
+ (l.α) +

λ2
0

2
f

(
2l2 + 2l21 sin2 ϕ

2
+ (l.α)

σ0

)
− 2λ2

0f

(
l2

2σ0

)
= 0 (14.32)

Supposing that (l.α) = l0α0− lα is a small quantity, one expands (14.32) over (l.α) .
As far as the zeroth term of expansion coincides with (14.22), The first term of
expansion of (14.32) has the form

(l.α) + ε
λ2

0

2
g′

(
2l2 + 2l21 sin2 ϕ

2

σ0

)
(l.α)

σ0

= 0 (14.33)
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or

(l.α) = l0α0 − l1α1 = 0, α0 =
l1α1

l0
(14.34)

Substituting α0 from (14.34) in (14.31), one obtains

2 (l1 − l1 cos ϕ) α1 − 2l1 sin ϕα2 +

(
l1α1

l0

)2

− α2
1 − α2

2 − α2
3 = 0 (14.35)

Taking into account that ϕ is small and setting for simplicity ϕ = 0, one obtains for
spatial components of vector α

((
l1
l0

)2

− 1

)
α2

1 − α2
2 − α2

3 = 0 (14.36)

As far as l21 > l20, the first term in (14.36) is positive, components of 3-vector α
may be infinitely large. It means that the wobbling amplitude is infinite. Thus, the

helical world chain (14.3) with the two-point spacelike skeleton P(s)
1 =

{
P

(s)
0 , P

(s)
1

}

is unstable with respect to the wobbling.

15 Helical world chain with three-point skeleton

Reduction of the wobbling of the world chain, consisting of spacelike vectors, can be
achieved, if we consider the world chain with more complicated links, whose skeleton
consists of three points {Pk, Pk+1, Qk+1}, k = ...1.2, ... Let PkPk+1 be a spacelike
vector, whereas the vector PkQk+1 be a timelike vector in GM. To investigate the
effect of stabilization, it is sufficient to consider the points P0, P1, P2, Q1, Q2, having
coordinates

P0 = {0} , P1 = {l} , P2 = {l+q + α} ,

Q1 = {s} , Q2 = {s + q + β} , (15.1)

Corresponding vectors have the form

P0P1 = l, P1P2 = q + α, P0P2 = l+q + α, (15.2)

P0Q1 = s, P1Q2 = s + q − l + β, P0Q2 = s + q + β, (15.3)

P1Q1 = s− l, P2Q2 = s− l + γ, Q1Q2 = q + β, (15.4)

Q1P2 = l + q − s + α, γ = β − α (15.5)

Here l, q, s are 4-vectors of the Minkowski space-time

l = {l0, l1, 0, 0} q = {l0, l1 cos ϕ, l1 sin ϕ, 0} , s = {s0, s1, s2, 0} (15.6)

Vectors α, β, γ = β − α are vectors describing wobbling, connected with points
P2 and Q2. On needs to write six dynamic equations corresponding to equalities

54



P0P1eqvP1P2, P0Q1eqvP1Q2, and P1Q1eqvP2Q2. Two equations, corresponding
to P0P1eqvP1P2, have been written and investigated (equations (14.5), (14.6))

In the case P0Q1eqvP1Q2 one obtains

s2 = (s + q − l + β)2 (15.7)

s2 + (β.s) + w (P0, Q1, P1, Q2) = s2 + 2d

(
s2

2

)
(15.8)

where according to (14.12) and (15.2) - (15.5)

w (P0, Q1, P1, Q2) = d (P0, Q2) + d (Q1, P1)− d (P0, P1)− d (Q1, Q2)

=
λ2

0

2

(
f

(
(s + q + β)2

2σ0

)
+ f

(
(s− l)2

2σ0

)
− f

(
l2

2σ0

)
− f

(
(q + β)2

2σ0

))
(15.9)

We define s in such a way, that

2 (s.q − l) = − (q − l)2 = 4l21 sin2 ϕ

2
(15.10)

Then
s = {s0, l1 (1− cos ϕ) , l1 sin ϕ, 0} (15.11)

Equations (15.7), (15.8) are transformed to the form

2 (β.s + q − l) + β2 = 0 (15.12)

(s.β) + 2l21 sin2 ϕ

2
+

λ2
0

2


 f

(
(s+q+β)2

2σ0

)
+ f

(
(s−l)2

2σ0

)

−f
(

l2

2σ0

)
− f

(
(q+β)2

2σ0

)
+ 2f

(
s2

2σ0

)



= −2d

(
s2

2

)
(15.13)

The necessary condition of the fact, that equation (15.13) has the solution β = 0,
has the form

2l21 sin2 ϕ

2
+

λ2
0

2


 f

(
(s+q)2

2σ0

)
+ f

(
(s−l)2

2σ0

)

−2f
(

l2

2σ0

)
− 4f

(
s2

2σ0

)

 = 0 (15.14)

Substituting f from (14.1) in (15.14), one obtains

4l21
λ2

0

sin2 ϕ

2
+ εg

(
(s0 + l0)

2 − l21
(
1 + 4 sin2 ϕ

)

2σ0

)
+ εg

(
(s0 − l0)

2 − l21
2σ0

)

−2εg

(
l20 − l21
2σ0

)
− 4εg

(
s2
0

2σ0

)
= −(1− εg (1))

σ0

s2
0 +O (

ε2
)

(15.15)
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This equation together with (14.22) determine parameters of the helical world chain:

l0, l1, s0, R, where R is defined by equation (14.21), (14.26) R = l1
(
2 sin ϕ

2

)−1
). These

parameters depend on the form of function g.
In the case P1Q1eqvP2Q2 we obtain

(s− l)2 = (s− l + γ)2 (15.16)

(s− l.s− l + γ) + w (P1, Q1, P2, Q2) = (s− l)2 + 2d

(
(s− l)2

2

)
(15.17)

where according to (14.12) and (15.2) - (15.5)

w (P1, Q1, P2, Q2)

= d (σM (P1, Q2)) + d (σM (Q1, P2))− d (σM (P1, P2))− d (σM (Q1, Q2))

= f

(
(s + q − l + β)2

2σ0

)
+ f

(
(l + q − s + α)2

2σ0

)
− f

(
l2

2σ0

)
− f

(
(q + β)2

2σ0

)

Equations (15.16) and (15.17) take the form

γ2 + 2 ((s− l) .γ) = 0, γ = β − α (15.18)

((s− l) .γ) +
λ2

0

2
f

(
(s + q − l + β)2

2σ0

)
+

λ2
0

2
f

(
(l + q − s + α)2

2σ0

)

−λ2
0

2
f

(
l2

2σ0

)
− λ2

0

2
f

(
(q + β)2

2σ0

)
− λ2

0f

(
(s− l)2

2σ0

)
= 0 (15.19)

In the case α = β = γ = 0 equation (15.19) turns to the equation

ε

(
g

(
(s + q − l)2

2σ0

)
+ g

(
(l + q − s)2

2σ0

)
− 2g

(
l2

2σ0

)
− 2g

(
(s− l)2

2σ0

))
= 0

or

εg

(
s2
0 − 4l21 sin2 ϕ

2σ0

)
+ εg

(
(2l0 − s0)

2 − 4l21 cos2 ϕ

2σ0

)

= 2εg

(
l20 − l21
2σ0

)
+ 2g

(
(s− l)2

2σ0

)
(15.20a)

One supposes that the function g has such a form, that system of three equations
(14.22), (15.15), (15.20a), considered as system of equations for variables l0, l1, s0, R
(l20, l

2
1, s

2
0 < σ0) has a solution. Thus, one supposes that parameters l0, l1, s0, R are

not arbitrary. They satisfy equations (14.22), (15.15), (15.20a). There may be other
solutions with α, β 6= 0
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Let us return to equations (15.18), (15.19)

γ2 + 2 ((s− l) .γ) = 0, γ = β − α (15.21)

Expanding them over γ, and taking into account (15.20a), one obtains

((s− l) .γ) + ε
λ2

0

2
g′

(
s2

2σ0

) (
2 (s + q − l.β) + β2

)

+ε
λ2

0

2
g′

(
(l + q − s)2

2σ0

)
(
α2 + 2 (l + q − s + α)

)

−ε
λ2

0

2
f

(
q2

2σ0

) (
β2 + 2 (q.β)

)
= 0 (15.22)

Taking into account (15.12) and (14.31) one obtains from (15.22)

((s− l) .γ) + ελ2
0g
′
(

(s0 − 2l0)
2 − 4l21 cos2 ϕ

2σ0

)
((l − s.α))

−ελ2
0g
′
(

(l0)
2 − l21
2σ0

)
(l − s.β) = 0 (15.23)

Or
((s− l) .γ) = O (ε) (15.24)

Supposing that β is small and expanding (15.13) over β, one obtains

(s.β) + 2l21 sin2 ϕ

2
+ ε

λ2
0

2


 g′

(
(s+q)2

2σ0

)
(2 (β.l))

−g′
(

q2

2σ0

) (
β2 + 2 (β.l − s)

)

 = 0

As far as sin2 ϕ
2

= O (ε), one obtains

(s.β) = O (ε) (15.25)

It follows from (15.25) and (15.11)

β0 =
βs

s0

+O (ε) =
l1 (β1 (1− cos ϕ) + β2 sin ϕ)

s0

+O (ε) = O (√
ε
)

(15.26)

Substituting (15.26) in (15.12) and taking into account that

s + q − l = {s0, 0, 2l1 sin ϕ, 0} (15.27)

one obtains

(
βs

s0

)2

− β2 − 4l1 sin ϕβ2 = O (ε) , β2 = −4l1 sin ϕβ2 +O (ε) = O (√
ε
)

(15.28)
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β2
1 +

(
1− 4l21 sin2 ϕ

s2
0

)
β2

2 + 4β2l1 sin ϕ + β2
3 = O (√

ε
)

(15.29)

Then
β1, β3 = O (√

ε
)
, β2 = O (1) , if s2

0 > 4l21 sin2 ϕ (15.30)

Let us consider equations for γ (15.24), (15.21). It follows from (15.24) and
(15.11)

γ0 =
γ (s− l)

s0 − l0
=
−l1 cos ϕγ1 + l1 sin ϕγ2

s0 − l0
=
−l1γ1

s0 − l0
+O (√

ε
)

(15.31)

Substituting (15.31) in (15.21), one obtains

(
l1

s0 − l0

)2

γ2
1 − γ2

1 − γ2
2 − γ2

3 = O (√
ε
)

(15.32)

It follows from (15.32) that

γ1, γ2, γ3 = O (
ε1/4

)
, if l21 < (s0 − l0)

2 (15.33)

Restriction (14.36) on α is valid, but α = γ + β, and γ and β are restricted by the
conditions (15.30) and (15.33), then α is restricted by the condition

α1, α3 = O (√
ε
)
, α2 = O (1) , if l21 < (s0 − l0)

2 , ε ¿ 1 (15.34)

Thus, in the case of three-point skeleton wobbling of the helical world chain
is restricted, provided s0 component of the timelike vector PsQs+1 is and large
enough. According to (14.26) the radius of the helix is of the order ε−1/2, whereas
the amplitude of wobbling is of the order 1. It means, that in the case, when ε ¿ 1
and l21 < (s0 − l0)

2, the wobbling of the world chain violate slightly the shape of
helix.

This property of the tachyon with three point skeleton reminds discrete states
of atomic electrons. The discreteness of the atomic electron states is conditioned by
the electromagnetic emanation of the atom. It radiates until the charge density of
the electron envelope changes in time. As soon as the electric charge density ceases
to change, the atom ceases to radiate and the electron state becomes stable. In the
case of the tachyon helix there is wobbling of the tachyon world chain. At some
values of parameters l, q, s the world chain wobbling reduces, and a quasi-stable
tachyon world chain arises.

16 Conclusion

In our way to tachyon model of neutrino we followed to physical principles (not
to arbitrary hypotheses), correcting mistakes and defects. At first we substituted
nonrelativistic concept of the particle state by the relativistic one. As a result we suc-
ceeded to construct a united formalism for description of deterministic and stochastic
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relativistic particles. It appeared that nonrelativistic quantum mechanics is a rela-
tivistic conception in the sense that stochastic component of the quantum particle
motion is relativistic. One should use relativistic description of the nonrelativistic
quantum particle motion. This stochastic component vanishes after averaging. The
mean regular component remains. It is nonrelativistic. As a result the nonrelativis-
tic quantum theory looks as a nonrelativistic conception, although in reality it can
be understood only from the viewpoint of relativistic statistical description.

The united formalism of dynamics admits one to interpret the quantum mechan-
ics as a dynamics of relativistic stochastic particles. Then the idea of uniting of
special relativity with principles of quantum theory appears to be unnecessary. The
question on reasons of the free elementary particles stochasticity appears instead.
Usually the stochastic behavior of quantum particle is explained by the quantum
principles, i.e. axiomatically. Now, when the quantum principles are not used, one
should find reasons of the elementary particle stochasticity. A reason of the free
elementary particle stochasticity appears a discreteness of the space-time geometry.
Exactly the reason of stochasticity is a multivariance of the discrete space-time ge-
ometry. Elementary length λ0 of the space-time geometry is connected with the
quantum constant ~. As a result the quantum constant appears to be a parameter
of the discrete space-time geometry. This fact explains the overall character of the
quantum constant (it is explained by properties of the space-time).

Using description of quantum mechanics, any quantum particle is labelled by a
classical particle which is a simplified (classical) model of the quantum particle. For
instance, from classical viewpoint a free electron has spin s and magnetic moment µ,
which depend on ~. World line of the free electron is a straight line. Classical model
for appearance of s and µ is absent. The quantities s and µ are simply quantum
numbers ascribed to electron. The quantities s and µ are obtained from the concept
of the quantum electron as a result of the limit ~ → 0, but nevertheless s and µ
depend on ~.

Using statistical description of a free electron as a stochastic particle, one can
label the stochastic particle by a deterministic (”classical”) particle. However, in
this case the world line of the deterministic particle is a helix. Spin s and magnetic
moment µ are explained by the helical character of the world line. In this case
the deterministic model admits one to construct a more detailed arrangement of
the electron. In this example we see, that the statistical approach admits one to
determine more detailed arrangement of the elementary particle. This becomes
more clear, if we compare situation of the elementary particles arrangement with
the situation at the investigation of the atoms arrangement.

In the investigation of the atoms properties there are two different approaches:
(1) structural approach, (2) empirical approach. At the structural approach one in-
vestigates the atoms arrangement, its components (nucleus and electron envelope),
dynamics of these components and their interaction. At the structural approach one
uses quantum mechanics and atomic physics. At the empirical approach one inves-
tigates properties of different chemical elements, classification of chemical elements
over their properties, reactions between chemical elements. The empirical approach
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is used in chemistry.
If one knows arrangement of atoms, one can calculate in principle properties

of chemical elements. But these calculations are very complicated, and one does
not use them in practice. One prefer to use periodical system of chemical elements
in order to classify and to investigate chemical reactions. The periodical system
was obtained empirically. It is more simple technically, although in principle the
chemical reaction can be calculated, if arrangement of atoms is known. However, one
cannot to investigate arrangement of the atoms, basing on empirical data, obtained
at empirical approach (periodical system of chemical elements). In this sense the
structural approach is more fundamental, than the empirical approach.

In the contemporary investigations of elementary particles one uses only em-
pirical approach. One cannot hope to investigate the arrangement of elementary
particles, using only empirical approach, which ascribes quantum numbers to ele-
mentary particles instead of investigation of their structure. Founded on quantum
theory, the empirical approach cannot explain, from where these quantum numbers
appear. Formalism of quantum theory does not admit one to obtain such an expla-
nation. Disruption between the structural approach and the empirical approach is
more in the elementary particle theory, than in the atomic theory.

Note that the structural approach uses a new formalism of the particle dynamics
and a new formalism of the space-time geometry. A new operation such as the
dynamical disquantization is used in the structural approach.

17 Appendix. Transformation of equation for

variable ξ

Multiplying equation (6.13) by 2(1 + zξ)/~ and keeping in mind that ξ2 = 1 and
z2 = 1, we obtain

−
(
ξ̇ × z

)
× ξ+

(
−(ξ̇ × z) +

(ξ × z)zξ̇

(1 + zξ)
− (ξ̇ × ξ)z

(1 + zξ)
z

)
× ξ

= −(ẋ× ẍ)× ξQ(1 + zξ) (17.1)

−
(
ξ̇ × z

)
× ξ − (ξ̇ × z)× ξ+


(ξ × z)

(
zξ̇

)

(1 + zξ)
− z

(
(ξ × z) ξ̇

)

(1 + zξ)


× ξ

= −(ẋ× ẍ)× ξQ(1 + zξ) (17.2)

The term in brackets is written as a double vector product

−2
(
ξ̇ × z

)
× ξ +

ξ̇ × ((ξ × z)× z)

(1 + zξ)
× ξ + (ẋ× ẍ)× ξQ(1 + zξ) = 0 (17.3)

−2
(
ξ̇ × z

)
× ξ − ξ̇ × (ξ − z(ξz))

(1 + zξ)2
× ξ + (ẋ× ẍ)× ξQ(1 + zξ) = 0 (17.4)
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Transforming the double vector products in the first and second terms, one obtains

ξ̇

(
ξ

(
2z−(zξ) z− ξ

(1 + z ξ)

))
+ (ẋ× ẍ)× ξQ(1 + zξ) = 0 (17.5)

ξ̇ ((2zξ− (zξ−1))) + (ẋ× ẍ)× ξQ(1 + zξ) = 0 (17.6)

ξ̇ = − (ξ × (ẋ× ẍ)) Q (17.7)
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