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Abstract

It is shown that quantum mechanics can be presented as a hydrodynamic
of some quantum fluid. In this case the quantum mechanics ceases to be an
axiomatic conception, because the axiomatic object of QM (wave function)
ceases to be an axiomatic object. In the hydrodynamics the wave function is
a method of an ideal fluid description. The quantum mechanics becomes to
be a classical dynamics of the stochastic particles. Problems of the quantum
mechanics interpretation disappear, because the interpretation is determined
by the mathematical formalism of classical dynamics.

Key words: classical dynamics of stochastic particles; κ-field; classical gas dy-
namics; wave function; .

1 Introduction

The problem of the quantum mechanics interpretation exists almost a century. There
are numerous versions of interpretations. It is connected with the fact, that quan-
tum mechanics is an axiomatic conception. It means that the quantum mechanics
conception contains an axiomatic object, defined only by its properties. This ax-
iomatic object is the wave function. Nobody knows, what is the wave function. One
cannot interpret an axiomatic conception exactly, because of indefinite axiomatic ob-
ject. In the classical mechanics there are no problems of interpretation, because the
mathematical formalism of classical mechanics admits one to interpret any physical
phenomenon, described in terms of classical mechanics.

It was shown that the Schrödinger equation describes a nonrotational flow of
some ”quantum” fluid [1]. D.Bohm used this circumstance in his hydrodynamic
interpretation of quantum mechanics [2]. Unfortunately, the connection between
the quantum mechanics and hydrodynamics has been one-sided all the twentieth
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century. One could obtain hydrodynamic description from the quantum mechanics,
but one was not enable to obtain the Schrödinger equation from hydrodynamical
equations. The reason of such a situation was the axiomatic object - wave func-
tion. The wave function is considered as a natural attribute of quantum mechanics,
whereas connection between the wave function and hydrodynamics was not clear.
Situation changed, when it has been shown, that the wave function appears to be
a method of description of any ideal (nondissipative) fluid [3]. Description in terms
of wave function is connected with conventional hydrodynamic description in terms
of hydrodynamic variables: density and velocity.

Due to this connection the wave function ceased to be an axiomatic object, Wave
function and spin turned to natural attributes of a classical dynamics of continuous
medium. The quantum mechanics, considered as a hydrodynamics, became to be a
classical dynamics, where there is no problem of interpretation. Besides, some force
field appears. It is responsible for quantum effects. In the quantum mechanics there
is the problem of uniting of nonrelativistic quantum principles with the principles of
relativity theory. In the quantum mechanics, considered as a hydrodynamics, such a
problem is absent, because the principles of quantum mechanics are absent. Instead
there is a force field κl, l = 0, 1, 2, 3, which is responsible for quantum effects.

A use of a fluid is a natural method of a stochastical particle description. There
are no dynamic equations for a single stochastic particle description. One can de-
scribe only a mean motion of a sochastic particle. A use of the distribution function
for description of a stochastic particle motion is possible only for a nonrelativistic
stochastic particle, because the distribution function in the phase space of coor-
dinates and momenta is a nonrelativistic construction. However, the nonrelativis-
tic quantum mechanics should be considered as a relativistic conception, because
random component of the particle velocity may be relativistic, even if the regular
component of the particle velocity is nonrelativistic.

For description of relativistic particles one needs to use a statistical ensemble.
Statistical ensemble E [Sd] of deterministic particles Sd is a set of N (N →∞) inde-
pendent particles Sd. E [Sd] is a fluidlike dynamical system. One can obtain dynamic
equations for Sd from dynamic equations for E [Sd]. On the contrary, one can obtain
dynamic equations for E [Sd] from dynamic equations for Sd. Thus, descriptions in
terms of E [Sd] and in terms of Sd are equivalent, if Sd is a deterministic particle
and there exist dynamic equations for Sd.

Let now particles Sd interact between themselves via some force field κ. Then the
statistical ensemble E [Sd] ceases to be a statistical ensemble, because its elements
S are not independent particles. The particles Sd turn to interacting particles Sst.
The set E [Sst] ceases to be a statistical ensemble, but it remains to be a fluidlike
dynamic system. We shall use the term int-ensemble for the dynamic system E [Sst].
One cannot obtain dynamic equations for Sst from dynamic equations for E [Sst]. It
means that elements Sst of int-ensemble E [Sst] are not deterministic particles. They
are stochastic particles. Dynamic equations for E [Sst] describe a mean motion of
stochastic particles Sst.

A simple example of such a situation is an ideal gas. Molecules of ideal gas are
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stochastic particles, and there are no dynamic equations for a single molecule inside a
gas. Motion of the ”gas particles” is described by equations of classical gas dynamics.
Any gas particle contains many molecules, and motion of a gas particle describes a
mean motion of the gas molecule. Interaction between the gas molecules is realized
by the molecular collisions. A single molecule (outside the gas) is a deterministic
particle. There are dynamic equations for a single molecule outside the gas. As to
stochastic particles, they are not deterministic particles, and there are no dynamic
equations for a single particle Sst. A use of int-ensemble E [Sst], where the stochastic
particles Sst interact via some force field κ is only a mathematical method, which
enables to describe the mean motion of Sst by means a int-ensemble E [Sst], which is
a fluidlike dynamic system. Of course, the kind of the particle stochastics depends
on the force field κ. This circumstance admits one to classify stochastic particles
by the force field κ, which appears in dynamic equations for int-ensemble E [Sst]. It
admits one also to consider the force field κ as a source of the particle stochasticity,
although the κ-field appears as a mathematical means of the stochastical particle
description.

2 Clebsch potentials

The complete system of hydrodynamic equations contains seven equations

∂ρ

∂t
+ ∇ (ρv) = 0,

∂v

∂t
+ (v∇)v = −∇p (ρ)

ρ
(2.1)

∂ξ

∂t
+ (v∇) ξ = 0 (2.2)

Three equations (2.2) describe the motion of the fluid particle in the given velocity
field v = v (t,x). They can be presented in the form

dx

dt
= v (t,x) (2.3)

Solutions ξ = {ξ1 (t,x) , ξ2 (t,x) , ξ3 (t,x)} =const of (2.2) are three independent in-
tegrals of (2.3). Indeed, due to (2.3) and (2.2) the expression

d

dt
ξ (t,x (t)) =

∂ξ (t,x (t))

∂t
+

(
dx

dt
∇

)
ξ (t,x (t)) = 0 (2.4)

vanishes. It means that ξ(t,x(t)) =const are integrals of (2.3). If ξ1 (t,x) , ξ2 (t,x) , ξ3 (t,x)
are three independent solutions of (2.2), equations (2.2) and (2.3) are equivalent.
Variables ξ are known as Lagrangian coordinates, which are constant along the fluid
particle trajectories according to their definition.

Four equations (2.1) form a closed subsystem of the system of dynamic equations
(2.1), (2.2). It is a reason, why usually one considers only four equations (2.1) as
a system of hydrodynamic equations, ignoring (2.2). One keeps in mind, that the
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ordinary equations (2.3) can be solved relatively easy, if the velocity field v(t,x) is
determined from (2.1). Besides, in many hydrodynamic problems the trajectories of
the fluid particles are not interesting.

The complete hydrodynamic system (2.1), (2.2) may be integrated partly in the
form

∂ρ

∂t
+ ∇ (ρv) = 0, v =b0 (∇ϕ + gα (ξ) ∇ξα) (2.5)

∂ξ

∂t
+ (v∇) ξ = 0 (2.6)

where gα (ξ), α = 1, 2, 3 are arbitrary functions, which are determined from the
initial conditions for v. The variable ϕ is a new variable, introduced instead of v.
The quantity b0 is an arbitrary constant. The second relation (2.5) is known as
Clebsch potentials. Clebsch obtained them for incompressible fluid [4, 5].

The wave function ψ = {ψα}, α = 1, 2, . . . , n is a n-component complex function.
It is constructed from Clebsch potentials by means of relations,

ψα =
√

ρeiϕwα(ξ), ψ∗α =
√

ρe−iϕw∗
α(ξ), α = 1, 2, . . . , n, (2.7)

ψ∗ψ ≡
n∑

α=1

ψ∗αψα, (2.8)

where (*) means the complex conjugate, wα(ξ), α = 1, 2, . . . , n are functions of only
variables ξ. They satisfy the relations

− i

2

n∑
α=1

(w∗
α

∂wα

∂ξβ

− ∂w∗
α

∂ξβ

wα) = gβ(ξ), β = 1, 2, 3,
n∑

α=1

w∗
αwα = 1. (2.9)

The number n is such a natural number, that equations (2.9) admit a solution. In
general n may depend on the form of the arbitrary integration functions g = {gβ(ξ)},
β = 1, 2, 3.

Hydrodynamic equations, described in terms of Clebsch potentials or in terms of
the wave function, are rather bulky. Hydrodynamists do not use them, and such a
presentation of hydrodynamic equations is known slightly. The only known exclusion
takes place, when the internal energy E of a fluid has the form

E =
1

2
ρv2

dif , vdif = − ~
2m

∇ log ρ, E =
~2

8m2

(∇ρ)2

ρ
(2.10)

If besides the fluid flow is nonrotational, one can set in (2.5) gα(ξ) = 0. In this case
the wave function is one-component, and choosing b0 = ~ in (2.5), hydrodynamic
equations in terms of the wave function appear to be linear. They coincide with the
Schrödinger equation.

Thus, we see, that the wave function is a method of description of any nondis-
sipative fluid, but this fact was discovered only in 1999 [3], and this fact is not
interesting for hydrodynamists, because the internal energy depending on (∇ρ)2
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is not used at a description of usual fluids. As concerns physicists, dealing with
quantum mechanics, a linear dynamic equation in terms of the wave function is very
attractive, even if it is not known, what is the wave function.

But why is the quantum particle described as a continuous medium, which has
infinite number of the freedom degrees? The quantum particle is a nondeterministic
(stochastic) particle. Dynamic equations do not exist for a single stochastic particle.
One can describe only a mean motion of a stochastic particle. To describe the mean
motion of a stochastic particle, one considers an int-ensemble (gas) of stochastic
particles, i.e. a set E [Sst] of N (N → ∞) identical stochastic particles Sst. The
int-ensemble E [Sst] is a continuous medium at N → ∞, and there are dynamic
equations for E [Sst].

For instance, a gas as a continuous medium is a dynamic system. Molecules of
the gas move stochastically, because of collisions. Equations of the gas dynamics
describe only a mean motion of molecules. Exact motion of molecules remains
unknown at such a description. To obtain a description of the mean motion of
molecules, it is sufficient to know only mean energy of molecules. In the case of
ideal gas the mean energy of the gas is E = 3

2
kTρ, where T is the gas temperature,

k is the Boltzmann constant, and ρ is the gas density. In the case of quantum particle
the mean energy is defined by the relation (2.10), where vdif is the mean diffusion
velocity. It means that the motion of a quantum particle deflects from the rectilinear
motion uniformly in all directions. In the case of a gas a more detailed information
on the velocity distribution (Maxwell distribution) is not necessary for description
of the mean motion of the gas molecules. The same is valid for description of the
mean motion of stochastic particles.

Note, that solving equations of the gas dynamics, one cannot determine the mean
value 〈F (x,v)〉 of arbitrary function F (x,v) of coordinates and velocity of gas
molecules. One can determine only the mean value 〈f (x)〉 of the arbitrary function
f (x) of coordinates, and mean values of additive variables such as momentum p =
mv, energy E = mv2/2, and angular momentum L = p× x. For determination
of other mean values, one needs to know the distribution function f (x,v), which
cannot be determined from the classical equations of the gas dynamics. The same
is valid in the case of quantum mechanics, when one has the Schrödinger equation
instead of the gas dynamics equations. The formula for calculation of mean values
in quantum mechanics

〈F (x,p)〉 =

∫
ψ∗ (x) F (x,− i~∇) ψ (x) dx (2.11)

is valid only for f (x), p, E = p2/2m, and L = p× x. However, according to
principles of quantum mechanics the formula (2.11) is considered to be valid for
arbitrary function F (x,p). The von Neumann’s theorem [6] on incompatibility of
hidden variables with principles of quantum mechanics is founded on the formula
(2.11), which is considered to be valid for arbitrary functions F .
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3 Statistical ensemble and int-ensemble of charged

particles

Let us consider statistical ensemble E [Sd] of deterministic charged particles Sd. The
action for E [Sd] has the form

E [Sd] : A [x] =

∫

ξ0

∫

Vξ

(
−mc

√
glkẋlẋk − e

c
Alẋ

l
)

d4ξ, ẋi =
∂xi

∂ξ0

(3.1)

where ξ = {ξ0, ξ1, ξ2, ξ3} are independent variables, and x = {x0 (ξ) , x1 (ξ) , x2 (ξ) , x3 (ξ)},
x = x (ξ) are dependent variables. The quantity ξ0 is an evolutional parameter along
the world line of a particle. The quantity Al is the 4-potential of the electromagnetic
field. The electromagnetic field Al is an external field, and via electromagnetic field
there are no interaction between the particles.

As far as the particles are deterministic, there are dynamic equations for each
single particle. They are obtained as a result of variation with respect to xl

mc
d

dξ0

glkẋ
k (ξ)√

ẋs (ξ) ẋs (ξ)
+

e

c
(∂lAk (x)− ∂kAl (x)) ẋk (ξ) = 0, ξ =const (3.2)

Let us imagine that, particles interact via some force field κl, l = 0, 1, 2, 3, which
changes the particle mass m

m2 → M2 (x) = m2 +
~2

c2

(
gklκ

kκl + ∂lκ
l
)
, ∂l ≡ ∂

∂xl
(3.3)

The force field κl, l = 0, 1, 2, 3 acts on the particle mass m, transforming it into
effective mass M . Here the κ-field κl = κl (x) = {κ0 (x) , κ1 (x) , κ2 (x) , κ3 (x)}.

Introduction of the κ-field in the action (3.1) turns the deterministic particle Sd

into a stochastic particle Sst. The action (3.1) takes the form

E [Sst] : A [x , κ] =

∫

ξ0

∫

Vξ

(
−mcK

√
glkẋlẋk − e

c
Alẋ

l
)

d4ξ, ẋi =
∂xi

∂ξ0

(3.4)

K =
M

m
=

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, ∂l ≡ ∂

∂xl
(3.5)

Here λ = ~
mc

is the Compton wave length. After introduction of interaction between
particles the statistical ensemble E [Sd] ceases to be a statistical ensemble, because
elements (particles) of the statistical ensemble are to be independent by definition.
Interaction of particles violates their independence. The statistical ensemble turns
to int-ensemble, i.e. a set of identical interacting particles.

If one tries to obtain the action for a single particle, removing integration over
d3ξ one obtains

Sd : A [x , κ] =

∫ (
−mcK

√
glkẋlẋk − e

c
Alẋ

l
)

dξ0, ẋi =
∂xi

∂ξ0

(3.6)
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The action (3.6) appears to be not well defined, because the K-factor (3.5) contains
derivatives of κ-field κl (x) in all directions of the space-time, whereas the action
(3.6) admits only derivatives along the world line. It means that the action (3.4)
cannot describe a motion of a single stochastic particle (if κl (x) 6= 0). It can describe
only an int-ensemble of stochastic particles. However, if κl (x) ≡ 0, K-factor K ≡ 1
in (3.6), and the action (3.6) becomes to be well defined. It can describe a single
deterministic particle. In fact the particles, described by the action (3.4), interact
between themselves via the κ-field.

After introduction of interaction between the particles of E [Sd] the statistical
ensemble E [Sd] turns to int-ensemble. As we have mentioned, E [Sst] is not a sta-
tistical ensemble, because particles Sst of the int-ensemble E [Sst] interact between
themselves. Introduction of interaction between independent particles of the statis-
tical ensemble is a method of description of stochastic particles. Different force fields
of interaction correspond to different internal energy of continuous medium of the
int-ensemble E [Sst].

In the ideal gas this interaction is described by the collision integral, describing
collisions between molecules. This integral describes a real interaction between
real molecules. If there is only one molecule, its motion is deterministic. In the
case of stochastic particles the particle interaction is fictitious in the sense, that
the particle motion is stochastic even in the case of one particle. The reason of
sochasticity may be internal reason of a single particle, but not an interaction with
other particles. Nevertheless, the stochasticity is described as an interaction of a
deterministic particle with other deterministic particles of the int-ensemble. The fact
is that the classical dynamics is a dynamics of deterministic particles. Considering
stochastic particles as interacting deterministic particles, one can describe a motion
of stochastic particles by methods of the classical dynamics. Reducing the
stochastic particle motion to a motion of interacting deterministic particles, one
uses the form of the κ-field for classification of forms of the particle stochasticity. In
the classical gas dynamics the stochasticity is presented by the internal energy E of
the gas .

At first, we consider the nonrelativistic case of the action (3.4), (3.5), when
component κ0 ¿ |κ|. In this case, expanding radical in (3.4), and setting ξ0 = t,
one obtains

AE[Sst] [x ,κ] =

∫

t

∫

Vξ

(
−mc2 +

m

2

(
dx

dt

)2

+
~2

2m
κ2 +

~2

2m
∇κ− e

c
A0 − e

c
A

dx

dt

)
dtd3ξ

(3.7)
where x = x (t, ξ) = {x1, x2, x3} and κ = κ (t,x) = {κ1, κ2, κ3} , A0 = A0 (t,x),
A = A (t,x).

Let us introduce designation

κ (t,x) = − ~
m

u (t,x) (3.8)

where u is the mean velocity of a particle in the int-ensemble E [Sst]. Let us set
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eA0/c = V (t,x), Aα = 0, α = 1, 2, 3. The action (3.7) takes the form.

AE[Sst] [x,u] =

∫

t

∫

Vξ

{
m

2

(
dx

dt

)2

+
m

2
u2 − ~

2
∇u−V

}
dtdξ, (3.9)

The first term of (3.7) is omitted, because it does not contribute to dynamic equa-
tions. The variable x = x (t, ξ) describes the regular component of the particle
velocity. The variable u = u (t,x) describes the mean value of the stochastic ve-
locity component. The first term of (3.9) describes the kinetic energy of regular
motion. The second term in (3.9) describes the kinetic energy of the stochastic
velocity component. The third term describes interaction between the stochastic
component u (t,x) and the regular component dx/dt. The operator

∇ =

{
∂

∂x1
,

∂

∂x2
,

∂

∂x3

}
(3.10)

is defined in the space of coordinates x. Dynamic equations for the dynamic system
E [Sst] are obtained as a result of variation of the action (3.9) with respect to dynamic
variables x and u.

Variation of (3.9) with respect to u gives

δAE[Sst] [x,u] =

∫ ∫

Vξ

{
muδu− ~

2
∇δu

}
dtdξ

=

∫ ∫

Vx

{
muδu− ~

2
∇δu

}
∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
dtdx

=

∫ ∫

Vx

δu

{
muρ +

~
2
∇ρ

}
dtdx−

∫ ∮
~
2
ρδudtdS (3.11)

where

ρ =
∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
=

(
∂ (x1, x2, x3)

∂ (ξ1, ξ2, ξ3)

)−1

(3.12)

We obtain the following dynamic equation

mρu +
~
2
∇ρ = 0, (3.13)

Variation of (3.9) with respect to x gives

m
d2x

dt2
= ∇

(
m

2
u2 − ~

2
∇u

)
(3.14)

Here d/dt means the substantial derivative with respect to time t

dF

dt
≡ ∂ (F, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)
(3.15)
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Resolving (3.13) with respect to u, we obtain the equation

u = − ~
2m

∇ ln ρ, (3.16)

which reminds the expression for the mean velocity of the Brownian particle with
the diffusion coefficient D = ~/2m.

Eliminating the velocity u from dynamic equations (3.14) by means of (3.16),
we obtain the dynamic equations for the mean motion of the stochastic particle Sst

m
d2x

dt2
= −∇V −∇UB, UB = U

(
ρ, ∇ρ, ∇2ρ

)
=
~2

8m

(∇ρ)2

ρ2
− ~2

4m

∇2ρ

ρ
(3.17)

Here ρ is considered to be function of t,x, and ∇ is the gradient in the space of
coordinates x. The density ρ is defined by (3.12). UB is so called Bohm potential [2].
Equations (3.17) are dynamic equations in the Lagrangian representations, where
x = x (t, ξ) , ξ = {ξ1, ξ2, ξ3}

To transform dynamic equations to the Euler representation, where dependent
dynamic variables ẋ ≡ v (t,x) , ξ = ξ (t,x), ρ = ρ (t,x), one should consider the
transformation Jacobian

J = J
(
ξi,k

)
=

∂ (ξ0, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξi,k

∣∣∣∣ , i, k, = 0, 1, 2, 3, ξi,k ≡
∂ξi

∂xk

(3.18)
After transformation one should set ξ0 = t, x0 = t. One obtains

∂J

∂ξ0,α

=
∂ (xα, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
=

∂ (xα, ξ1, ξ2, ξ3)

∂ (ξ0, ξ1, ξ2, ξ3)

∂ (ξ0, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
(3.19)

Setting in (3.19) ξ0 = t, x0 = t, one obtains

∂J

∂ξ0,α

=
∂ (xα, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)

∂ (t, x1, x2, x3)
(3.20)

According to (3.15) and (3.12)

v =
dx

dt
=

∂ (xα, ξ1, ξ2, ξ3)

∂ (t, ξ1, ξ2, ξ3)
, ρ =

∂ (t, ξ1, ξ2, ξ3)

∂ (t, x1, x2, x3)
=

∂ (ξ1, ξ2, ξ3)

∂ (x1, x2, x3)
(3.21)

It follows from (3.20), (3.21), that According to (3.12)

∂J

∂ξ0,0

= ρ,
∂J

∂ξ0,α

= ρvα, α = 1, 2, 3 (3.22)

Using identity
∂

∂xk

∂J

∂ξ0,k

=
∂

∂x0

∂J

∂ξ0,0

+
∂

∂xα

∂J

∂ξ0,α

≡ 0 (3.23)
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and relations (3.22) one obtains the continuity equation

∂ρ

∂t
+ ∇ (ρv) = 0 (3.24)

The equation (3.17) takes the form

dv

dt
=

∂v

∂t
+ (v∇)v = −∇V −∇UB (3.25)

Hydrodynamic form (3.24), (3.25) of the Schrödinger equation has been obtained
by Madelung [1]. It has been used by Bohm [2] for the case of nonrotational flow,
when v = ∇ϕ, and equation (3.25) can be written in the form

∂∇ϕ

∂t
+ ∇(∇ϕ)2

2
= −∇V −∇UB (3.26)

In the case of a rotational flow the equation (3.25) is not equivalent to the Schrödinger
equation.

4 Relativistic case

Let us return to the action (3.4), (3.5) and show, that int-ensemble E [Sst] can be
described in terms of wave function. We shall consider variables ξ = ξ (x) in (3.4) as
dependent variables and variables x as independent variables. After manipulations
with the transformation Jacobian (3.18) and introduction of the wave function (2.7),
(2.9) one obtains the action (3.4), (3.5) in the form (See details in Appenix)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ρ− ~

2

4
(∂lsα)

(
∂lsα

)
ρ

}
d4x

(4.1)
where

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (4.2)

ψ =
(

ψ1
ψ2

)
, ψ∗ = (ψ∗1, ψ

∗
2) , (4.3)

σα are 2× 2 Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (4.4)

Variations with respect to ψ∗ leads to dynamic equation

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −

(
m2c2 +

~2

4
(∂lsα)

(
∂lsα

))
ψ

= −~2∂l

(
ρ∂lsα

)

2ρ
(σα − sα) ψ (4.5)
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It is nonlinear, generally speaking. However, let the wave function be one-component,
or components ψ1 and ψ2 be linear dependent ψ1 = aψ2, a = const. Then s = const
and ∂isα = 0. In this case nonlinear terms in (4.5) vanish, and dynamic equation
(4.5) turns to the Klein-Gordon equation

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ = 0 (4.6)

5 Discussion

Considering dynamics of continuous medium as a mathematical instrument for de-
scription of stochastic particles, one can found the quantum mechanics and explain
the origin of the wave function as a natural means of a fluid description.

Describing a gas by means of classical gas dynamics, one cannot say anything on
structure and arrangement of the gas, because the gas dynamic equations are sim-
ply conservation laws of the matter and of its energy-momentum. However, adding
the collision integral and describing the gas motion by means of a kinetic equation,
one may determine the distribution function and learn the gas motion mechanism.
Analogously, if one determines the nature of the κ-field, one may to obtain infor-
mation on arrangement of elementary particles. Axiomatic conception of quantum
mechanics does not admit one to obtain any information on the elementary particles
arrangement. The contemporary quantum theory describes elementary particles as
pointlike objects provided by a set of quantum numbers. According to quantum
theory elementary particles have no internal structure. When internal structure of
hardrons has been discovered experimentally, the quantum theory explained this
fact by existence of pointlike particles (quarks), which cannot exist singly outside
the hardron. However, existence of quarks only inside hardrons shows that quarks
are elements of the hardron structure, but the quantum theory cannot accept such
a supposition. It considers quarks as single particles.

This reminds situation with investigations of chemical elements, where there are
two approaches: (1) empirical approach and (2) structural approach. The empirical
approach is used by chemists. They are not interested in the atom arrangement.
They are interested only in systematization of chemical elements. Chemists ascribe
some characteristic numbers (atomic weight, valency, etc...) to any chemical ele-
ment and systematize the chemical elements according to these numbers. Physicists
use the structural approach, which admits one to determine arrangement of atoms
(nucleus, electronic envelope, etc.). Using empirical approach of chemists, one could
not create atomic energetics and atomic weapon.

The quantum theory could explain arrangement of the atom, but it cannot ex-
plain arrangement of elementary particles, because of its empirical approach. For
instance, the quantum mechanics describes the electron by the Dirac equation. In
this presentation the Dirac particle (electron) is a pointlike particle, having the mass
m, charge e, spin ~/2, and magnetic moment µ = e~/2mc. These quantum numbers
contain the quantum constant ~, even at the classical approach. The world line of
a free Dirac particle is a straight line.
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The Dirac equation can be considered as an equation [7], describing some fluid.
In this case the world line of a free Dirac particle is a helix with timelike axis. The
particle rotation along the circles of the helix is a source of spin and of the magnetic
moment, which are not simple quantum numbers now. Such a connection between
the quantum numbers and the structure of the particle world line cannot be obtained
in the framework of the axiomatic conception of quantum theory.

In the fluid dynamics the formula of type of (2.11) for calculation of mean val-
ues is valid only for some physical quantities. The axiomatic quantum mechanics
expands action of this formula on all physical quantities [6]. As a result one ob-
tains the Neumann’s theorem on hidden variables, which is not true, because the
formula (2.11) is valid not for all quantities , as it is supposed in the conditions of
the theorem.

Linearity of dynamic equation for a certain kind of fluid is expanded to all
dynamic equations of quantum mechanics without sufficient foundation. As a result
one obtains the linearity principle instead of a special case of the fluid flow.

The force field κ determines properties of the fluid, in terms of which the mo-
tion of stochastic particles is described. One may said, that the κ-field describes
properties of the stochastic particle. Thus, quantum effects are described by the
some force field κ, but not by quantum principles and not by a change of physical
quantities by some operators or matrices.

Changing the effective particle mass (3.3), the κ-field may make M2 to be nega-
tive. It is a necessary condition of pair production (change of the world line direction
in time). This change of M2 needs a strong κ-field. The κ-field can be strong enough,
if it is an external force field, because the internal κ-field of a particle, which is re-
sponsible for quantum effects, is too weak for such a change of the mass [8]. In the
axiomatic quantum mechanics the internal κ-field is included in the wave function,
whereas the external κ-field is not used. As a result the pair production effect in
the quantum field theory is a corollary of inconsistency of the second quantization
procedure in the relativistic case. [9, 10]. Situation with the second quantization of
the nonlinear Klein-Gordon equation looks as follows. At the conventional second
quantization in the relativistic case the wave function contains both annihilation
operators and creation operators. As a result the Hamiltonian H coincides with
the energy E of the system for free particles. Such a coincidence takes place in
the nonrelativistic case (for instance, in the case of the second quantization of the
Schrödinger equation). In the relativistic case such a coincidence takes place only in
the absence of the pair generation. In the case, when the pair production is possible
the conventional method of the second quantization leads to nonstationary vacuum
state. This fact is explained usually in the sense, that vacuum state does not con-
tain particles, but it contains virtual particles. In reality nonstationary vacuum is
a corollary of inconsistent statement of the the second quantization problem. At a
inconsistent statement of the problem one may obtain any results, which one wants.
It is necessary only to have sufficient ingenuity.

Introducing the distribution function and kinetic equation for it, one obtains a
more detailed information on the gas motion mechanism. In a like way considering a
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source of the κ-field, one can obtain a more detailed information on the elementary
particle arrangement [11].

6 Appendix. Transformation of the action to

representation in terms of wave function

Let us consider variables ξ = ξ (x) in (3.4) as dependent variables and variables x
as independent variables. Let the Jacobian (3.18)

J =
∂ (ξ0, ξ1, ξ2, ξ3)

∂ (x0, x1, x2, x3)
= det

∣∣∣∣ξi,k

∣∣∣∣ , ξi,k ≡ ∂kξi ≡
∂ξi

∂xk
, i, k = 0, 1, 2, 3

(6.1)
be considered to be a multilinear function of ξi,k. Then

d4ξ = Jd4x, ẋi ≡ dxi

dξ0

≡ ∂ (xi, ξ1, ξ2, ξ3)

∂ (ξ0, ξ1, ξ2, ξ3)
= J−1 ∂J

∂ξ0,i

(6.2)

After transformation to dependent variables ξ the action (3.4) takes the form

A [ξ, κ] =

∫ {
−mcK

√
gik

∂J

∂ξ0,i

∂J

∂ξ0,k

− e

c
Ak

∂J

∂ξ0,k

}
d4x, (6.3)

K =

√
1 + λ2 (κlκl + ∂lκl), λ =

~
mc

, (6.4)

Now variables ξ and κ are considered as functions of independent variables x.
Let us introduce new variables

jk =
∂J

∂ξ0,k

, k = 0, 1, 2, 3 (6.5)

by means of Lagrange multipliers pk

A [ξ, κ, j, p] =

∫ {
−mcK

√
gikjijk − e

c
Akj

k + pk

(
∂J

∂ξ0,k

− jk

)}
d4x, (6.6)

Variation with respect to ξi gives

δA
δξi

= −∂l

(
pk

∂2J

∂ξ0,k∂ξi,l

)
= 0, i = 0, 1, 2, 3 (6.7)

Using identities
∂2J

∂ξ0,k∂ξi,l

≡ J−1

(
∂J

∂ξ0,k

∂J

∂ξi,l

− ∂J

∂ξ0,l

∂J

∂ξi,k

)
(6.8)

∂J

∂ξi,l

ξk,l ≡ Jδi
k, ∂l

∂J

∂ξi,l

≡ 0 ∂l
∂2J

∂ξ0,k∂ξi,l

≡ 0 (6.9)
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one can test by direct substitution that the general solution of linear equations (6.7)
has the form (2.5)

pk = b0 (∂kϕ + gα (ξ) ∂kξα) , k = 0, 1, 2, 3 (6.10)

where b0 6= 0 is a constant, gα (ξ) , α = 1, 2, 3 are arbitrary functions of ξ = {ξ1, ξ2, ξ3},
and ϕ is the dynamic variable ξ0, which ceases to be fictitious. Let us substitute
(6.10) in (6.6). The term of the form ∂J/∂ξ0,k∂kϕ is reduced to Jacobian and does
not contribute to dynamic equations. The terms of the form ξα,k∂J/∂ξ0,k vanish
due to identities (6.9). We obtain

A [ϕ, ξ, κ, j] =

∫ {
−mcK

√
gikjijk − jkπk

}
d4x, (6.11)

where quantities πk are determined by the relations

πk = b0 (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (6.12)

Integration of (6.7) in the form (6.10) is that integration which admits to in-
troduce a wave function. Note that coefficients in the system of equations (6.7) at
derivatives of pk are constructed of minors of the Jacobian (6.1). It is the circum-
stance that admits one to produce a formal general integration.

Variation of (6.11) with respect to κl gives

δA
δκl

= −λ2mc
√

gikjijk

K
κl + ∂l

λ2mc
√

gikjijk

2K
= 0, λ =

~
mc

(6.13)

It can be written in the form

κl = ∂lκ =
1

2
∂l ln ρ, e2κ =

ρ

ρ0

≡
√

jsjs

ρ0K
, ρ =

√
jsjs

K
(6.14)

where the variable κ is potential of the κ-field κi and ρ0 =const is the integration
constant. Substituting (6.4) in (6.14), we obtain dynamic equation for κ

~2
(
∂lκ · ∂lκ + ∂l∂

lκ
)

= m2c2 e−4κjsj
s

ρ2
0

−m2c2 (6.15)

Variation of (6.11) with respect to jk gives

πk = − mcKjk√
glsjljs

(6.16)

or
πkg

klπl = m2c2K2 (6.17)

Substituting
√

jsjs/K from the second equation (6.14) in (6.16), we obtain

jk = − ρ0

mc
e2κπk, (6.18)
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Now we eliminate the variables jk from the action (6.11), using relation (6.18)
and (6.14). We obtain

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2K2 + πkπk

}
d4x, (6.19)

where πk is determined by the relation (6.12). Using expression (3.5) for K, the first
term of the action (6.19) can be transformed as follows.

−m2c2e2κK2 = −m2c2e2κ
(
1 + λ2

(
∂lκ∂lκ + ∂l∂

lκ
))

= −m2c2e2κ + ~2e2κ∂lκ∂lκ− ~
2

2
∂l∂

le2κ

Let us take into account that the last term has the form of divergence. It does
not contribute to dynamic equations and can be omitted. Omitting this term, we
obtain

A [ϕ, ξ, κ] =

∫
ρ0e

2κ
{−m2c2 + ~2∂lκ∂lκ + πkπk

}
d4x, (6.20)

Here πk is defined by the relation (6.12), where the integration constant b0 is chosen
in the form b0 = ~

πk = ~ (∂kϕ + gα (ξ) ∂kξα) +
e

c
Ak, k = 0, 1, 2, 3 (6.21)

Instead of dynamic variables ϕ, ξ, κ we introduce n-component complex function
(2.7), (2.9)

ψ = {ψα} =
{√

ρeiϕwα (ξ)
}

=
{√

ρ0e
κ+iϕwα (ξ)

}
, α = 1, 2, ...n (6.22)

Here wα are functions of only ξ = {ξ1, ξ2, ξ3}, having the following properties

α=n∑
α=1

w∗
αwα = 1, − i

2

α=n∑
α=1

(
w∗

α

∂wα

∂ξβ

− ∂w∗
α

∂ξβ

wα

)
= gβ (ξ) (6.23)

where (∗) denotes the complex conjugation. The number n of components of the
wave function ψ depends on the functions gβ (ξ). The number n is chosen in such a
way, that equations (6.23) have a solution. Then we obtain

ψ∗ψ ≡
α=n∑
α=1

ψ∗αψα = ρ = ρ0e
2κ, ∂lκ =

∂l (ψ
∗ψ)

2ψ∗ψ
(6.24)

πk = −i~ (ψ∗∂kψ − ∂kψ
∗ · ψ)

2ψ∗ψ
+

e

c
Ak, k = 0, 1, 2, 3 (6.25)

Substituting relations (6.24), (6.25) in (6.20), we obtain the action, written in terms
of the wave function ψ

A [ψ, ψ∗] =

∫ {[
i~ (ψ∗∂kψ − ∂kψ

∗ · ψ)

2ψ∗ψ
− e

c
Ak

] [
i~

(
ψ∗∂kψ − ∂kψ∗ · ψ)

2ψ∗ψ
− e

c
Ak

]

+ ~2∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4 (ψ∗ψ)2 −m2c2

}
ψ∗ψd4x (6.26)
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Let us use the identity

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ψ∗ψ
+ ∂lψ

∗∂lψ

≡ ∂l (ψ
∗ψ) ∂l (ψ∗ψ)

4ψ∗ψ
+

gls

2
ψ∗ψ

α,β=n∑

α,β=1

Q∗
αβ,lQαβ,s (6.27)

where

Qαβ,l =
1

ψ∗ψ

∣∣∣∣
ψα ψβ

∂lψα ∂lψβ

∣∣∣∣ , Q∗
αβ,l =

1

ψ∗ψ

∣∣∣∣
ψ∗α ψ∗β

∂lψ
∗
α ∂lψ

∗
β

∣∣∣∣ (6.28)

Then we obtain

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

+
~2

2

α,β=n∑

α,β=1

glsQαβ,lQ
∗
αβ,sψ

∗ψ

}
d4x (6.29)

Let us consider the case of nonrotational flow, when gα (ξ) = 0. In this case
w1 = 1, w2 = 0, and the function ψ has only one component. It follows from (6.28),
that Qαβ,l = 0. Then we obtain instead of (6.29)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ∗ψ

}
d4x (6.30)

Variation of the action (6.30) with respect to ψ∗ generates the Klein-Gordon equation

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −m2c2ψ = 0 (6.31)

Thus, description in terms of the Klein-Gordon equation is a special case of the
stochastic particles description by means of the action (3.4), (3.5).

In the case, when the fluid flow is rotational, and the wave function ψ is two-
component, the identity (6.27) takes the form

(ψ∗∂lψ − ∂lψ
∗ · ψ)

(
ψ∗∂lψ − ∂lψ∗ · ψ)

4ρ
− (∂lρ)

(
∂lρ

)

4ρ

≡ −∂lψ
∗∂lψ +

1

4
(∂lsα)

(
∂lsα

)
ρ (6.32)

where 3-vector s = {s1, s2, s3, } is defined by the relations

ρ = ψ∗ψ, sα =
ψ∗σαψ

ρ
, α = 1, 2, 3 (6.33)

ψ =
(

ψ1
ψ2

)
, ψ∗ = (ψ∗1, ψ

∗
2) , (6.34)
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and Pauli matrices σ = {σ1, σ2, σ3} have the form (4.4). Note that 3-vectors s
and σ are vectors in the space Vξ of the Clebsch potentials ξ = {ξ1, ξ2, ξ3}. They
transform as vectors at the transformations

ξα → ξ̃α = ξ̃α (ξ) , α = 1, 2, 3,
∂

(
ξ̃1, ξ̃2, ξ̃3

)

∂ (ξ1, ξ2, ξ3)
6= 0 (6.35)

In general, transformations of Clebsch potentials ξ and those of coordinates x
are independent. However, the action (6.26) does not contain any reference to the
Clebsch potentials ξ and transformations (6.35) of ξ. If we consider only linear
transformations of space coordinates x

xα → x̃α = bα + ωα
.βxβ, α = 1, 2, 3 (6.36)

nothing prevents from accompanying any transformation (6.36) with the similar
transformation

ξα → ξ̃α = bα + ωα
.βξβ, α = 1, 2, 3 (6.37)

of Clebsch potentials ξ. The formulas for linear transformation of vectors and spinors
in Vx do not contain the coordinates x explicitly, and one can consider vectors and
spinors in Vξ as vectors and spinors in Vx, provided we consider linear transforma-
tions (6.36), (6.37) always together.

Using identity (6.32), we obtain from (6.26)

A [ψ, ψ∗] =

∫ {(
i~∂k +

e

c
Ak

)
ψ∗

(
−i~∂k +

e

c
Ak

)
ψ −m2c2ρ− ~

2

4
(∂lsα)

(
∂lsα

)
ρ

}
d4x

(6.38)
Dynamic equation, generated by the action (6.38), has the form

(
−i~∂k +

e

c
Ak

)(
−i~∂k +

e

c
Ak

)
ψ −

(
m2c2 +

~2

4
(∂lsα)

(
∂lsα

))
ψ

= −~2∂l

(
ρ∂lsα

)

2ρ
(σα − sα) ψ (6.39)

The gradient of the unit 3-vector s = {s1, s2, s3} describes rotational component
of the fluid flow. If s = const, the dynamic equation (6.39) turns to the conventional
Klein-Gordon equation (6.31).
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