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ABSTRACT 

 

This work is motivated by the problem of restraining temperature escalation inside a 

porous heat-releasing media submerged in a pool of liquid coolant. When coolant temperature 

reaches saturation, boiling begins in the bulk of the porous bed, with void generation rate 

determined by the heating power. Amount of void determines hydrostatic pressure difference that 

drives natural circulation of two-phase flow through the porous material. At a certain critical 

value of the heat release rate, the driving head cannot overcome drag of the two phase porous 

media flow, which results in complete evaporation of coolant in some zone. Temperature of 

material in the dry zone increases significantly due to deterioration of heat exchange with single 

phase vapor flow in comparison with boiling flow heat transfer. The paper considers the problem 

of determining the critical conditions for onset of dryout in a heat-releasing porous bed of an 

arbitrary shape. The well-known one-dimensional problem for a flat top-flooded bed is revisited, 

and the functional form of the dryout boundary (expressed as the dryout heat flux, DHF) is 

derived using non-dimensional parameters. Asymptotic behavior of the solution is analyzed, and, 

by the method of asymptotic interpolation, a surrogate model is proposed consisting of three 

single-argument, non-dimensional functions. It is shown that such a model provides acceptable 

accuracy even in the cases where complete similarity of solutions is not achieved. The results 

obtained provide important insights into the physics of the problem, reduce the number of free 

parameters, and enable fast evaluation of dryout conditions without the need of numerical 

solution of algebraic equations involved in the exact formulation. The ultimate goal of the 

surrogate model development, i.e. its application to multidimensional configurations, is 

discussed. 
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1. INTRODUCTION 

Studies of water cooling of an internally heated porous bed are to a large extent motivated 

by nuclear power plant safety problems. In the event of a severe accident caused by failure of 

reactor fuel cooling function, core degradation and relocation of molten core materials (corium) 

into the lower plenum of reactor pressure vessel can occur, which can then result in subsequent 

vessel failure, as was the case in the severe accident at Fukushima Dai-Ichi power plant on 

March 11
th

 2011 [1]. 

In many reactor designs, most notably in Nordic-type boiling water reactors (BWRs) [2], a 

deep water pool in the reactor cavity is available as a design feature intended to prevent direct 

thermal attack on the containment floor and penetrations (doors, cable openings etc.) by the 

molten corium released from the vessel. Provided that the pool is deep enough, melt-water 

interaction results in corium fragmentation, quenching and formation of a porous debris bed on 

the pool floor (containment basemat).  

Short-term cooling of high-temperature melt is achieved by the removal of the latent heat 

stored in the corium material and bringing the particle surface temperature close to the saturation 

temperature of coolant corresponding to the local hydrostatic pressure. However, there also 

exists a continuous source of material heating due to radioactive decay (so-called decay heat) 

persisting at quite high levels (~megawatts) for a long time (days, months). If decay heat cannot 

be removed, gradual material reheating will bring its temperature to high values at which 

exothermal chemical reactions can start, or even remelting of corium can occur. High 

temperature (~2000-3000K) molten debris attack on the containment structures poses immediate 

threat to the containment integrity. The coolability problem, thus, is to provide conditions under 

which the decay heat released in the corium is transferred to the pool of water in natural 

circulation conditions for a long enough period to maintain the material temperature at low levels 

and, therefore, to arrest the accident progression. 

Water evaporation is the principal heat transfer mechanism by which the decay heat 

released in corium particles can be removed from the bulk of porous bed. This mechanism is 

efficient as long as all the porous material remains wetted by water supplied by filtration through 

the outer boundary of the bed. The coolant flow rate is determined by the balance between void 

generated in the bed (and thus hydrostatic pressure difference) and two phase flow drag in 

porous media. If the heat release rate exceeds some critical value, driving head becomes 

insufficient and a dry zone filled with steam can appear. In this zone, the temperature of solid 

material starts to grow due to the imbalance between decay heat release and heat removal. The 

temperature of debris can be stabilized eventually, but at much higher values determined by the 

efficiency of single phase heat transfer from debris to steam. 

Research into the conditions under which dryout can occur, depending on porous bed 

properties (particle diameter, porosity), system pressure and bed geometry was first focused on a 

one-dimensional configuration with water fed into the bed either on top, or with additional 

bottom feeding [3, 4, 5, 6, 7, 8, 9, 10]. The models derived were considering the balance between 

the vapor and liquid flows in the bed, the main differences being in the formulation of two-phase 

drag laws (including the porous medium and interfacial drag). Steady-state solution with non-

zero water volume fraction throughout the bed bulk was interpreted as a stable configuration, and 

the maximum heat flux at which such a solution existed was referred to as the Dryout Heat Flux 

(DHF). 
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Multidimensional configurations of the debris bed were treated either experimentally, or by 

numerical simulations. So far, axisymmetric porous beds of simple shapes (conical, cylindrical, 

mound-shaped) received most attention [11, 12]. Generally, it has been established quite well 

that heap-like configurations are better coolable than a flat porous layer of the same height due to 

enhanced water ingress into the bed through its side surface in comparison with the counter-

current flow (descending water and ascending vapor), characteristic of one-dimensional beds. 

However, for the same mass of the debris bed, flat configuration provides higher values of the 

total decay heat that can be removed, than a heap-like configuration [13, 14, 15, 16]. 

Despite the progress in understanding the behavior and coolability of a heat-releasing bed 

in a pool, there are still remaining issues which have to be resolved [18, 19], including the 

uncertainties in the bed properties, shape and system conditions (pressure, subcooling etc.). For 

non-flat debris beds, computationally expensive numerical simulations are required in order to 

determine if a debris bed of a certain shape and properties (particle diameter, porosity) is 

coolable at a particular system pressure and decay heat specific power. 

Severe accident risk analysis should include quantification of aleatory (accident scenario-

related) and epistemic (modeling) uncertainties inherent in the problem. To this end, large 

number of simulations is required, which is not feasible with full numerical models. A way 

forward is the development of surrogate models that approximate, in a computationally 

inexpensive way, the response surface of a full model with sufficient accuracy [2]. Such models 

are widely used in engineering as a means facilitating analysis and design of complex systems 

[20]. Usually a database of the full (detailed and thus computationally expensive) model 

solutions is necessary in order to develop an approximation (surrogate) model. As the database is 

often limited, there is a concern about reliability of the surrogate model predictions in the 

interpolation and (even more so) in extrapolation regime. One way of increasing reliability of the 

surrogate model is to retain significant part of the basic physics explicitly in the surrogate model, 

and provide calibrated closures that are applicable for the whole application domain. 

In the current work, we consider the coolability problem for a heat-releasing porous bed 

from the basic physics point of view, in order to derive the functional relationships determining 

the coolability boundary in the multidimensional parameters space. We then analyze the well-

known one-dimensional solutions and propose analytical approximations describing the 

coolability boundary. The analysis is performed for three drag models, two of which take into 

account the interfacial drag. 

2. PROBLEM FORMULATION 

2.1. Dimensional formulation 

Consider a general coolability problem for an arbitrary-shaped heat-releasing porous bed 

submerged in a water pool at saturation conditions. The porous bed has homogeneous properties 

 ,d   and constant volumetric heat release rate Q per unit volume of the porous bed (the latter 

quantity can be related to the specific heating power W , solid material density s , and 

porosity   by  1 sQ W   ). We are looking for a steady state solution in the whole porous 

bed for superficial velocities and volume fractions of liquid, l , and vapor, 1v l   , such that 

0l   everywhere, i.e. there is no dry zone in the bed. In this case, the heat released by solid 
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material goes to evaporation of liquid coolant, and the volumetric evaporation rate 
evQ H    

is constant throughout the porous bed. 

The system of equations describing stationary evaporation and two-phase filtration in the 

porous bed includes the phase continuity and momentum equations, the latter take into account 

the linear and quadratic terms [21]: 

 i i i  j       (1) 

iji i
i i i i

ri ri i

P
KK

 


 

 
     

 

F
g j j j      (2) 

Hereafter, the subscript ,i l v  refers to liquid and vapor phases, respectively. The source terms 

in the continuity equation (1) are 
l v   . Equation (2) relates the pressure gradient P  to 

the sum of the gravity term (with g  being the gravity acceleration) and total drag, the terms in 

the parentheses describe the drag due to the porous medium. The rightmost term in (2) describes 

the interfacial drag dependent on the relative phase velocity, with ijF  denoting the force exerted 

to i-th phase by j-th: lv vl  F F F  (so that F  is defined as the force exerted to liquid by moving 

vapor). All phase properties  ,i i   are assumed to be constant and correspond to the saturated 

conditions at the average system pressure 
sysP  (which is the sum of gas space pressure above the 

pool level, and hydrostatic head in the pool), i.e., effect of variation of pressure inside the bed on 

the phase properties is neglected, implying 
sys sysP P P . Note that in Eqs. (1) and (2) the 

volume fractions of phases 1v l      (where   is referred to as the void fraction) are 

affecting the relative (phasic) permeabilities 
riK  and passabilities 

ri , as well as the interfacial 

drag F . 

We consider a porous bed resting on an impermeable solid boundary (pool bottom), where 

the superficial velocities of both phases vanish. On the outer boundary of the porous bed, 

pressure is assumed to follow the hydrostatic pressure distribution in the pool.  

For monodisperse spherical particles, the absolute permeability and passability are related 

to the bed porosity,  , and particle diameter, d, by [21] 

 

3 2

2
150 1

d
K







, 

 

3

1.75 1

d






    (3) 

These relations can also be used for particles of arbitrary shapes and size distributions, provided 

that d  is considered as a properly averaged effective mean particle diameter providing the same 

drag as the original bed. A number of averaging approaches were proposed, of which the Sauter 

mean diameter, defined in such a way that the surface-to-volume ratio of polydisperse particle 

collection is the same as that of equivalent monodisperse particles, is a popular choice. However, 

other averaging strategies are also possible, for example, based on the equivalency of total drag 

forces [22]. 

Spatial distributions are sought for the void fraction  , superficial velocities ij  of both 

phases, and pressure P , satisfying the condition 1   in the porous bed. If for some set of 

parameters such a solution does not exist, dryout must occur and, thus, the configuration is 
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considered to be non-coolable. The coolability problem is, thus, reduced to finding the boundary 

surface in the parameter space separating the domains of existence and non-existence of 

solutions to equations (1) and (2). Note that this is a conservative assumption, as debris 

temperatures can be stabilized at relatively moderate levels if the dry zone is relatively small [23, 

24]. 

Before resorting to the analysis of the dryout boundary, note that the form of two-phase 

momentum equation (3) with scalar permeability and passability (4) is widely used in the 

literature; however, this form was derived for the most part empirically. An interesting research 

avenue is development of drag model on more mechanistic grounds, by formal averaging of the 

local momentum equations of each phase [25–30]. In this approach, tensor quantities appear in 

the drag laws. Potential extension of the approach presented in this paper to such more 

complicated governing equations containing a larger number of internal scales and respective 

closures is a subject of future work. 

2.2. Non-dimensional form 

The scales of different physical quantities are denoted hereafter by asterisk. We consider a 

heap-shaped porous bed and take its height for the length scale: *L H . The density and 

viscosity scales are taken equal to the corresponding vapor properties, *

v   and *

v   

(therefore, non-dimensional density and viscosity of vapor are equal to unity), the pressure scale 

is introduced as * * *P gL , the interfacial drag is normalized by 
*g . 

Three independent characteristic velocities can be formed of the problem parameters: 

1
v

v

K g
J




 , 2J g  , 

v

H
J





     (4) 

Of these, 1J  and 2J  are related to the linear and quadratic drag terms in (2), while J
 is obtained 

from the characteristic mass flux of vapor, given the volumetric evaporation rate and porous bed 

height. Two independent non-dimensional quantities relating these velocities are 

 
1

2

vv

vv

K gK gJ

J g

  


 
   , 

2 ev v

J QH
q

J H g

 
  

  (5) 

Parameter   has the meaning of the Reynolds number based on the characteristic porous 

medium size K  , velocity g , density 
v , and viscosity 

v . Parameter q  is the non-

dimensional heat flux at the top point of the porous bed, QH , normalized by the evaporation 

heat flux carried along by the vapor moving with the superficial velocity g . Note that 

definitions (4) and relations (5) contain the quantities K  and   entering the drag law (2), rather 

than individual parameters ( d ,  ). However, for monodisperse spherical particles (see (3)), 

these formulas can be expressed in the following form: 

38.8 10 ,
1

v

v

d d g d
d

 



 


 

  


    (6) 

Evidently, the particle diameter d  and porosity   enter the non-dimensional parameter   not 

independently, but as the characteristic pore size d . 
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Introduce now non-dimensional quantities denoted by tilde using the above scales; the 

superficial velocities of both phases are normalized by J
. The governing equations (1), (2) take 

the following form: 

  1

l l
  j        (7) 

  1v j        (8) 

2

v v v

rv rv

q q
P

K
    

F
g j j j



 
     (9) 

2

1

l l
l l l l

rl rl

q q
P

K
    



F
g j j j

 


 
    (10) 

where / gg g  is the unit vector directed downwards. 

Further analysis of equations (7)–(10) requires particular closures for relative phase 

permeabilities riK , passabilities ri , and interfacial drag F . In what follows, we consider first 

the well-known one-dimensional problem of a top-flooded internally heated particulate bed, with 

emphasis on the functional form of the dryout condition for different drag models. After that, we 

extend the results to multidimensional configurations. 

3. GENERAL FORM OF DRYOUT CONDITION 

3.1. Models without interfacial drag 

We begin the analysis of dryout condition by considering a simple case where the relative 

phase permeabilities 
riK  and passabilities 

ri  are functions of the respective volume fractions i  

only, and the interfacial drag is not taken into account. Such models were proposed in [3, 4, 5], 

with power-law functions  

   1 , 1

,

n m

rl rl

n m

rv rv

K

K

  

  

   

 
,  0F     (11) 

All three models mentioned have the exponents 3n   in the relative permeabilities, 

whereas the exponents in the relative passabilities are 4m   [3], 5m   [4], and 6m   [5]. The 

value 5m   proposed by Reed [4] seems to give the best agreement with experiments and will 

be used hereafter. 

Since no additional dimensional parameters are introduced in the models (11), it follows 

from equations (7)–(10) that for two geometrically similar porous beds, non-dimensional 

solutions for  , lj , and vj  are the same, provided that four non-dimensional parameters, q ,  , 

l , and l  coincide. This means that the surface in the parameter space, bounding the domain 

where steady-state solutions exist, can be expressed as a relationship between these four 

parameters, or one of them can be expressed as a function of the other three. It is convenient to 

consider  , l , and l  as independent parameters, and determine the boundary value 

corresponding to occurrence of dryout for the non-dimensional heat flux at the top point of the 

porous bed q . In accordance with the traditional notation in coolability studies, we call the 

corresponding dimensional quantity the Dryout Heat Flux (DHF), and denote its non-

dimensional value by DHFq . Therefore, 
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 DHF , ,l lq          (12) 

It should be noted that the first parameter involves the drag characteristics of the porous 

medium, whereas the second and third ones depend solely on the physical properties of the 

coolant. Recall now that we assume that the coolant in the heat-releasing porous medium is at 

saturation conditions, in which case all coolant properties (including density and viscosity of 

both liquid and vapor phases) are single-valued functions of local pressure, or, under the 

assumption of small pressure deviations with respect to the prevailing system pressure 
sysP , all 

properties are determined by 
sysP  only. If we consider 

sysP  as a non-dimensional quantity (for 

example, by measuring the system pressure in bars) the relationship (12) can be presented in the 

following form: 

 DHF , sysq P      (13) 

The above analysis shows the functional dependence of dryout heat flux on the problem 

parameters. However, the function   in (13) is specific to porous bed geometry, it cannot be 

found without solving equations (7)–(10), either analytically (where possible) or numerically. A 

straightforward way to obtain   for some particular porous bed shape would be to carry out 

large enough number of simulations and approximate the response surface by any suitable fitting 

technique. We, however, attempt to use as much available knowledge as possible, before 

resorting to the response surface fitting. To this end, we apply the asymptotic interpolation 

method [33] which uses the known two-sided asymptotic behavior of the solution at the left and 

right ends of the interval, and aims at finding an interpolant satisfying asymptotic behaviors at 

both ends. 

It is known that porous bed coolability is improved when particle size or porosity are 

increased because of lower drag and, thus, easier vapor evacuation from the porous material. 

Therefore, for any system pressure 
sysP  the function   is increasing monotonically with  , 

with the following asymptotic behavior: 

1. 0  . This case corresponds to low permeability K  and large passability  , and thus, to the 

linear drag terms being dominant over the quadratic terms in (9) and (10). In this limit, DHFq  

must be independent of   and depend only on K , which means that the ratio   must be 

finite, or 

 0 sysP       (14) 

2.   . This case corresponds to high permeability K  and low passability  , and thus, to the 

quadratic drag terms being dominant over the linear terms in (9) and (10). In this limit, DHFq  

must become independent of K  and depend only on  , which means that function   must tend 

to a finite value: 

 sysP       (15) 

Importantly, the asymptotic functions 0  and   are independent of the porous medium 

properties, but depend on the system pressure 
sysP  only. Following [14, 16], we rescale the 

argument   and function   by 0  and  : 
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0̂ 






, ˆ




 


     (16) 

in such a way that the resulting function  ˆ ˆ , sysP  would possess at any pressure 
sysP  the 

following properties: 

ˆ 0

ˆ
1

ˆ

d

d






 , 

ˆ

ˆlim 1


       (17) 

The function ̂  introduced in (16) still formally depends on both ̂  and 
sysP  defining a 

family of functions  ˆ ̂  depending parametrically on sysP . Since the asymptotic behavior of 

̂  at ˆ 0   and “at infinity”, described by (17), is independent of sysP , one can expect that the 

influence of system pressure on the dryout heat flux manifests itself mainly through the two 

single-argument functions,  0 sysP  and  sysP , see (14) and (15), and that the family of 

curves  ˆ ˆ , sysP  is condensed tightly around a function of single variable  ˆ ̂ . Should this 

hypothesis hold true, the whole dependence of dryout heat flux on problem parameters (12) can 

be described by three single-argument functions,  0 sysP ,  sysP , and  ˆ ̂ , for which 

appropriate approximations can be found easily, providing a computationally inexpensive 

surrogate model for the dryout boundary. The accuracy of this hypothesis, however, cannot be 

known beforehand and must be checked by comparing predictions of the surrogate model with 

the “raw” results of complete model, as will be demonstrated in the following sections. 

3.2. Models with explicit interfacial drag 

The same analysis can be applied to models that take into account the drag due to relative 

motion of liquid and vapor phases in the pores (interfacial drag). The possibility of finding 

similarity solutions, however, depends on whether the interfacial drag force F  obeys the same 

scaling as the drag of flowing phases due to interaction with solid particles. We consider here 

two such models available in the literature, paying most attention to the functional form of the 

closures for the relative permeabilities and passabilities, and for the drag force. 

3.2.1. Drag model by Schulenberg and Müller [6] 

Schulenberg and Müller derived the interfacial drag model [6] by considering the main 

scales present in the porous medium and considering coarse particles for which the capillary 

forces due to particle wettability can be neglected, with all acting forces scaled with the 

buoyancy force. The resulting expressions determining the two-phase drag are 

   
3 5

6

3 *

4

*

1 , 1

, 0.316
,

0.1

rl rl

rv rv

K

K

  

  
 

  

   

  
  



,     (18) 

   
7

350 1 l
l v r r

K
g


   


  F V V , 
1

v l
r

 
 



j j
V   (19) 

Note that the relative permeabilities and passabilities (18) are functions of void fraction   only 

(as was the case in Section 3.1). Consider the possibility of using similarity approach for the 
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interfacial drag F . Reducing (19) to non-dimensional form with the scales introduced in 

Section 2.2, we obtain 

 
 7 2

1
350 1 Ca

l l

r r

l

q


  F V V
 

 


, 
1

v l
r

 
 



j j
V   (20) 

with 
1Ca /lJ    being the capillary number based on the characteristic velocity 1J . With the 

same reasoning as in derivation of Eq. (13), we conclude that the dryout boundary can be 

represented by 

 DHF , ,Casysq P       (21) 

Asymptotic behavior of (21) at small and large   can be represented by two functions 0  and 

  (see (14), (15)) which, however, depend on two variables, 
sysP  and Ca . 

3.2.2. Tung and Dhir Original and Modified Models [7, 8] 

The second model explicitly taking into account the interfacial drag considered here was 

originally proposed by Tung and Dhir [7] and later modified and validated by Schmidt et al [8]. 

In the original model [7], the following relationships describe the gas-particle drag: 

 
30     (bubbly and slug flow): 

4/3

41

1
rvK






 
  

 
,   

2/3

41

1
rv


 



 
  

 
    (22) 

 3 4     (transition) 

 4 1    (pure annular flow): 

4/3

31

1
rvK






 
  

 
,   

2/3

31

1
rv


 



 
  

 
    (23) 

 

The boundaries between different flow regimes are  

 

2

1

2 3 4

min(0.3, 0.6(1 ) ),

2
0.52, 0.6, 0.74

6 6

bD

d
  

 
  

  

    

    (24) 

 

The liquid drag due to interaction with the porous medium particles is described by the 

relative phase permeability and passability 

 
4

1rl rlK     .      (25) 

The interfacial drag is 

 
 

 
2

1 22

1
1 1

l vl
r r r

b b

C C
D D

  
  

 
   F V V V    (26) 

where / / (1 )r v l   V j j  is the relative phase velocity. The bubble diameter used in the 

above relations for the porous medium drag is 

 
1.35b

l v

D
g



 



     (27) 
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The friction coefficients are given separately for bubbly and slug flow: 

 
10     (bubbly flow): 

1 18C  ,  
3

2 0.34 1C         (28) 

 

 
2 3    : (slug flow) 

1 5.21C  ,  
3

2 0.92 1C         (29) 

For high void fractions, 
4 1    the drag is obtained from 

   1 1v v
r r r

rv rvKK

 
  


   F V V V     (30) 

Smooth transition between flow regimes is obtained by third-order polynomial interpolation. 

The modifications to the drag model [7] introduced and validated by Schmidt et al. [8] 

include i) limiting the bubble diameter (27), ii) changing the flow regime boundaries (24), and 

iii) changing the interfacial drag (30) for particles smaller than 6-8 mm. The corresponding 

modified values denoted by superscript m  are: 

 

 

 

 

1 3 1 3

4 4

2

2

min ,0.41

/ 6
min 8mm ,0 ,

5

/ 6
min 6mm ,0 ,

5

1 min ,1
6mm

m

b b

m

m

m

D D d

d

d

d


 


 



 



 
   

 

 
   

 

  
         

F F

    (31) 

(in the bottom three lines, d  is measured in millimeters). 

From the similarity point of view, one can see that relative permeabilities and passabilities 

of gas phase (22) and (23) are expressed as powers of the void fraction   multiplied by a factor 

in parentheses containing the porosity  . On the other hand, the flow regime boundaries (24) and 

(31) contain the particle diameter d . There are also a number of additional dimensional 

parameters appearing in the drag law formulation, including the bubble diameter (27) and the 

particle sizes 6 and 8 mm in the modification (31). The non-dimensional form of interfacial drag 

(26) is expressed by 

      
2 2 2

1 22

Ca
1 1 Fr 1 1

1.35
l r l r rC q C q              F V V V  (32) 

where 1Ca /lJ    is the capillary number, 2

1Fr / bJ gD  is the Froude number based on the 

superficial velocity 1J  and characteristic bubble ascend velocity bgD  due to buoyancy. The 

interfacial drag in the annular regime (30) takes the following non-dimensional form: 

   
2

1 1r r r

rv rv

q q

K
   F V V V


  


    (33) 

Overall, the dryout boundary corresponding to DHF can be written, by analogy with (13), as 

DHF , ,Ca,Fr, ,
1mm

sys

b

d d
q P

D

 

  
 

     (34) 
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where the latter parameter appears due to modifications (31) involving the dimensional particle 

diameter measured in millimeters. 

Evidently, larger number of parameters appearing in the functional dependency of non-

dimensional dryout heat flux in (21) and (34) makes the asymptotic interpolation, originally 

proposed in Section 3.1 for a model without interfacial drag, more complicated. However, it will 

be shown in the next section that such an interpolation can be performed approximately, with the 

accuracy sufficient for engineering estimates of dryout conditions. 

4. DRYOUT HEAT FLUX FOR ONE-DIMENSIONAL TOP-FLOODED POROUS BED 

4.1. Solution Procedure 

Dryout in a one-dimensional internally heated porous bed resting on an impermeable base 

with water supplied on its top (a top-flooded bed) has been studied in many experimental and 

analytical works [3, 4, 5, 6, 7, 8, 9, 12, 18], including those where the drag models quoted in 

Section 2 were derived and validated. The procedure for finding the dryout conditions can be 

summarized as follows (see details, e.g. in [6]). In the one-dimensional top-fed configuration, 

vapor is flowing upwards and replacing it water is flowing downwards, creating so-called 

counter-current flow regime, with the highest (by absolute value) superficial velocities of vapor 

and liquid reached at the bed top. In the steady state, these velocities, as it follows from 

integration of continuity equations (1), are /top

v v evj QH H  ,  /top top

l v v lj j    . Substituting 

these into the momentum equations (2) and eliminating the pressure gradient, we arrive at a 

single quadratic equation with respect to top

vj , with the coefficients expressed in terms of the void 

fraction at the bed top, top , and containing other problem parameters involved in the drag laws 

and depending on the particular drag model. The largest possible solution maxtop

v vj j  to the 

quadratic equation determines the dryout heat flux maxDHF v v evj H  . 

Due to complexity of the coefficients of the quadratic equation (especially when the 

interfacial drag is included in the model), determination of DHF requires numerical solution of a 

non-linear algebraic equation with respect to the void fraction top . Thus, even in the one-

dimensional case the problem of finding DHF and analyzing its dependence on properties of 

porous material and system pressure does not have a simple analytical solution. It becomes a 

much more computationally expensive task for multi-dimensional configurations. 

In this work, we develop a computationally efficient surrogate model, which can be used 

for different problem statements. To demonstrate the approach, we consider the 1D case and 

calculate DHF for a sufficiently large number of cases, varying each input parameter in the range 

of interest for the particular physical problem. Then we analyze the database of solutions 

obtained using the general functional form of dryout criterion derived in Section 3, consider the 

limiting cases and perform asymptotic interpolation between them. The purpose is to derive 

simple enough approximations while retaining the key physics of the exact solution. We then 

evaluate the deviation of the approximate solution arising due to the presence of additional 

parameters in the multi-parameter functional form, not taken into account directly in the primary 

approximation. After that, we discuss extension of this approach to other bed configurations. 

As the particular problem, consider coolability of a heat-releasing porous bed in a water 

pool under the conditions relevant to severe accidents in light water nuclear power plant reactors. 

The parameter ranges are summarized in Table 1, their choice was based on the following 
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grounds. The range of particle diameter 0.5 25d    mm was taken wider than the expected 

particle sizes typical of molten corium-water interaction (the upper limit for the porous particle 

size can hardly exceed 10 mm, see the fuel-coolant interaction experiments FARO [31] and 

DEFOR [32]). A wider range was taken in order to obtain large enough values of argument   

necessary to study the asymptotic behavior of the function describing the dryout heat flux. The 

porosity range was based on the experimental data from different tests [17, 18, 19], while the 

system pressure range covers possible values of nuclear reactor containment pressure in severe 

accident conditions [2].  

Table 1   Parameter ranges 

Parameter Description Range 

d  Mean particle diameter, [mm] 0.5–25 

  Porosity, [–] 0.3–0.55 

sysP  Average pressure in the porous bed, [bar] 1–5 

 

In the calculations, the model input parameters were entered in the dimensional form. 

Particle diameter was varied with the step 0.2 mm (123 values), porosity with the step 0.025 (11 

values), system pressure with the step 0.2 bar (21 value), with the number of cases totaling to 

28413 for a given drag model. For each combination  , , sysd P , water and vapor properties on 

the saturation line  , , , , ,l v l v evH      were calculated at the current pressure sysP  according 

to the IAPWS-IF97 formulation [34]; the absolute permeabilities and passabilities were obtained 

from the formulas (3) as functions of current particle diameter d  and porosity  . After that, the 

dimensional dryout heat flux DHF was calculated by the procedure outlined above. The non-

dimensional drag parameter   was then evaluated from (5), and the non-dimensional dryout 

heat flux calculated as  DHF DHF / ev vq H g   , providing a single point on the  DHF,q  

plane. The database of all calculated points was then analyzed in order to find the best fit to the 

response surface. In the following sections, results obtained for the three drag models are 

presented. 

4.2. Results 

4.2.1. Drag model by Reed [4] 

Consider first the simplest case where interfacial drag is not taken into account. It was 

shown in Section 3.1 that the non-dimensional dryout heat flux DHFq  depends on two parameters, 

  and 
sysP , see (13). This means that, for a fixed pressure 

sysP , all results obtained for different 

particle diameters d  and porosity   must be described by a function of single variable  . This 

is confirmed in Fig. 1a where  DHF , sysq P  is plotted, each dot corresponding to a single 

combination of parameters from Table 1 (for clarity, only some indicated pressures are 

represented). Dots are packed quite tightly and look like continuous curves, confirming that   is 

a proper argument of the dependence. 

The functions 0  and   describing the asymptotic behavior at small and large   (see 

(14) and (15)) were determined from the data obtained, they are presented in Fig. 1b by the filled 
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and open dots, respectively. To facilitate their practical use, the following approximating 

formulas were found: 

0 1.2

1000

0.295 1.78 sysP
 


     (35) 

0.67

100

1 4.386 sysP
 


     (36) 

Functions (35) and (36) are plotted in Fig. 1b by solid lines. 

With the use of functions 0  and 
 , all data presented in Fig. 1a were transformed to the 

form (16). The results are presented in Fig. 1c, with the asymptotic behavior (17) shown by the 

dashed lines. One can see that for Reed’s drag model (and, accordingly, for all models belonging 

to family (11)) the asymptotic interpolation provides a unified description of the dryout heat flux. 

For the function  ˆ ̂  presented in Fig. 1c, the following approximation was found: 

ˆ
1

 





, 

1.12
ˆ

0.675

 
  
 


     (37) 

In Fig. 1d, all points from Fig. 1a,c are replotted against the transformed abscissa 

 / 1      spanning the range [0,1] ; the diagonal straight line represents the 

approximation (37) taking a simple form ˆ   . Agreement between the actual points and 

approximation (37) is within 1%, which is quite sufficient for the engineering purposes given 

typical magnitude of uncertainty due to the possible ranges of the input parameters. 

Thus, we have shown that for Reed’s drag model [4] for a flat porous bed the dependence 

of dryout heat flux on all problem parameters can be expressed in the non-dimensional form by 

three single-argument functions  0 sysP ,  sysP , and  ˆ ̂ . Approximations to all these 

functions (35)–(37) provide a convenient and computationally efficient way to evaluate the 

dryout conditions without the need to solve numerically any equations. 
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a)      b) 

 
c)      d) 

Fig. 1. Dryout heat flux in non-dimensional variables for a flat porous bed (Reed’s drag 

model [4]): a) dependence  DHF , sysq P , b) functions  0 sysP  and  sysP  describing 

asymptotic behavior at 0   and   , c) data in transformed variables  ˆ ̂ , d) 

approximation  ˆ   by (37). 

 

4.2.2. Drag model by Schulenberg and Müller [6] 

Similarity analysis carried out in Section 3.2.1  shows that for the model by Schulenberg 

and Müller [6], which explicitly takes into account the interfacial drag, non-dimensional dryout 

heat flux depends not only on the two primary parameters   and 
sysP , but also on an additional 

parameter Ca (capillary number) involving surface tension, see (21). Therefore, as was 

discussed above, the functions 0  and  describing the asymptotic behavior of 

 DHF , ,Casysq P  at small and large   depend on two parameters 
sysP  and Ca . However, it 

would be highly beneficial to represent the multidimensional response surface by a number of 

one-dimensional functions. In what follows, we analyze the results obtained in the parameter 

ranges from Table 1 from this point of view. 
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In Fig. 2a, the non-dimensional dryout heat flux DHFq  is plotted against the parameter   

for a number of fixed values of system pressure 
sysP . Two main differences can be observed in 

comparison with the corresponding curves in Fig. 1,a (Reed’s model). Firstly, there is some 

scatter of points for a fixed pressure, more visible at low pressures; this scatter reflects the effect 

of parameter Ca . Secondly, the general behavior of the data for each pressure is non-monotonic: 

as   increases, DHFq  is growing to reach some maximum, after which it decreases gradually. 

Note that this decrease is not visible in Fig. 2,a at high pressures, however, the range of   

presented in the graph is smaller than the overall range spanned by all combinations of problem 

parameters in Table 1. Notably, the scatter of points becomes more significant after the 

maximum of DHFq  was passed. Recall that high values of  , as it follows from Eq. (6), 

correspond to large particle diameters and high porosity, i.e., they are relevant to very permeable 

porous beds with high DHF, which are usually not of risk significance [13, 15]. From the point 

of view of nuclear safety, the most interesting is the other end of the problem parameter 

spectrum, when porous bed possesses relatively low filtration capacity and is prone to dryout at 

low heating power. This is achieved at low values of  , where monotonic increase of DHFq  with 

  is observed. 

Note that in the latter parameter range, scatter of points due to the effect of Ca  is low or 

moderate. For 1D problem with counter-current vapor and water flow, the critical conditions for 

water ingress are attained at the top boundary where the volume fraction of vapor   takes its 

maximum value. Accordingly, the volume fraction of water, entering the interfacial drag (19) as 

 
7

1  , diminishes the magnitude of interfacial drag, and, thus, reduces its relative influence on 

the dryout conditions. 

In order to apply the approach, which proved to be successful in Section 4.2.1, we 

determine the function   for each pressure not at   , but take the maximum value of 

DHFq  for each dataset corresponding to a given pressure 
sysP . The highest value of DHF /q   

(corresponding to the smallest particle size and lowest porosity) was taken as the value of 0  for 

each pressure. The results are presented in Fig. 2,b by dots, with the following best-fit 

approximations shown by corresponding solid curves (the functional form of the approximations 

was taken the same as in (35) and (36): 

 

0 1.2

1000

0.261 1.84 sysP
 


      (38) 

0.67

100

1.35 5.1 sysP
 


      (39) 

 

In Fig. 2,c, the data of Fig. 2,a are replotted in the scaled variables (16), with the dashed 

lines representing the asymptotic formulas (17). Finally, an approximation formula  

ˆ
1

 





, 

1.32
ˆ

0.65

 
  
 


      (40) 
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was obtained by least-square fitting the data in Fig. 2,c. all points from Fig. 2,a,c are replotted 

against the transformed abscissa  / 1      spanning the range [0,1] ; the diagonal straight 

line represents the approximation (40) taking a simple form ˆ   . Overall, data deviation from 

the approximating straight line is within 5%, not counting the differences near the right end of 

the interval which is not too important from the point of view of applications for which the 

approximations are derived (very high permeability). 

 
a)      b) 

 
c)      d) 

Fig. 2. Dryout heat flux in non-dimensional variables for a flat porous bed (Schulenberg and 

Müller’s drag model [6]): a) dependence  DHF , sysq P , b) functions  0 sysP  and  sysP  

describing asymptotic behavior at 0   and   , c) data in transformed variables  ˆ ̂ , d) 

approximation  ˆ   by (37). 

4.2.3. Modified Tung and Dhir’s model [7, 8] 

Analysis of this model from the similarity point of view performed in Section 3.2.2 shows 

that the non-dimensional dryout heat flux DHFq  is a function of multiple parameters, see (34). 

However, we attempt here to obtain a small number of one-dimensional functions representing 

the response surface of the model with accuracy sufficient for engineering applications. 

In Fig. 3a, the non-dimensional dryout heat flux DHFq  is plotted against the parameter   

for a number of fixed values of system pressure 
sysP . As was the case in Section 4.2.2, the data 
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are scattered due to the effect of the remaining parameters in (34). In this model, however, all 

dependencies are monotonic, similar to the case of Reed’s model (Fig. 1a). By the same 

procedure as in the previous two cases, the asymptotic functions are found, see Fig. 3b: 

0 1.2

1000

0.417 2.83 sysP
 


      (41) 

0.65

100

0.83 3.3 sysP
 


      (42) 

After that, the data of Fig. 3a are replotted in a unified manner in Fig. 3c for which the 

approximating function found is 

ˆ
1

 





, 

0.965
ˆ

0.825

 
  
 


      (43) 

Finally, all data points are replotted against the transformed abscissa  / 1      spanning 

the range [0,1] ; the diagonal straight line represents the approximation (43) taking a simple form 

ˆ   . Overall, data deviation from the approximating straight line is within 7% . 

 
a)      b) 

 
c)      d) 

Fig. 3. Dryout heat flux in non-dimensional variables for a flat porous bed (Modified Tung and 

Dhir’s model [7, 8]): a) dependence  DHF , sysq P , b) functions  0 sysP  and  sysP  

describing asymptotic behavior at 0   and   , c) data in transformed variables  ˆ ̂ , d) 

approximation  ˆ   by (37). 
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4.3. Surrogate Model Implementation 

The results presented above provide an efficient way to evaluate the non-dimensional 

dryout heat flux for a top-flooded internally heated porous bed. With the accuracy acceptable for 

engineering applications and safety analysis, DHF can be approximated by the set of three one-

dimensional functions, albeit with constants dependent on the drag model. For reference, we 

summarize here the final formulas: 

DHFDHF ev vH g q         (44) 

DHF
1

q  





 

0

ˆ
c

 
  
 







    (45) 

  0ˆ v

v

K g  


 





     (46) 

0

0
0

0 0

d

sys

a

b c P
 


,  

d

sys

a

b c P 




 

 


   (47) 

In Table 2, the constants involved in these correlations are given for the three drag models 

considered. 

 

Table 2   Constants in correlations (44)–(47) 

Drag model 
0a  0b  0c  0d  a  b  c  d  0  c  Rel. 

error 

Reed [4] 1000 0.295 1.78 1.2 100 1.00 4.386 0.67 0.675 1.12 <1% 

Schulenberg and 

Müller [6] 

1000 0.261 1.84 1.2 100 1.35 5.1 0.67 0.650 1.32 4%  

Tung and Dhir 

(modified) [7, 8] 

1000 0.417 2.83 1.2 100 0.83 3.3 0.65 0.825 0.965 7%  

 

It can be seen from (44)–(47) that the dimensional dryout heat flux involves in (44), (46) 

the water properties on the saturation line (heat of evaporation evH , vapor density v  and 

viscosity v ) corresponding to the system pressure sysP . Thus, the effect of system pressure on 

DHF is manifested not only explicitly via the functions 0  and   (see (47)), but also via the 

coolant properties. In the implementation of surrogate model (44)–(47), it might be convenient to 

evaluate the saturated water and vapor properties from simpler fitting functions, rather than from 

quite complicated IAPWS formulation [34]. The following formulas were found to give 

acceptable accuracy (within 1%) in the range of system pressures 1 10sysP    bar relevant to ex-

vessel severe accident problems: 
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  (48) 

Note finally that the coefficients of approximating formulas presented in Table 2 were 

obtained for water as a liquid coolant. The procedure for derivation of the surrogate model can 

be repeated for other coolants, if necessary. 

5. MULTIDIMENSIONAL POROUS BED 

A surrogate model for dryout condition in multidimensional (2D axisymmetric or truly 3D) 

porous beds can be derived following the procedure presented in Section 3 and demonstrated for 

a simpler case of 1D porous bed in Section 4. For multidimensional configuration, obtaining 

each solution point in the parameter space (i.e., determining the dryout heat power or 

corresponding dryout heat flux at the top of the porous bed) requires numerical solution of 

governing equations performed repeatedly for various values of the volumetric heating power Q  

(either gradually increasing it, or applying some search algorithm) to find the value at which 

dryout occurs. In the non-dimensional form, the dryout condition can be presented as 

 DHF , , ,sys M Gq P        (49) 

where M  denotes model-specific parameters (cf. Eqs. (13), (21), (34)), whereas G  denotes a 

set of geometry parameters describing the porous bed shape. 

By following the proposed approach directly, one can determine the asymptotic functions 

 0 , ,M G    and  , ,M G    describing behavior of (49) at small and large  , and then 

determine the interpolant  ˆ ˆ , G  . These functions, however, would be geometry-specific, 

and a new set of functions must be generated for a particular porous bed shape. 

A preferable approach is based on the approximate factorization of (49): 

     0, , , , ,sys M G sys M GP P           (50) 

where 0  corresponds to the approximation obtained in Section 4 for 1D porous bed, while 

 G   is a shape-specific factor describing the effects of geometry. In this way, the asymptotic 

formulas and interpolating functions derived for one-dimensional bed are used in the surrogate 

model for multidimensional bed coolability, reducing significantly the computational expenses 

required for the derivation of approximating formulas. 

Factorization (50) was successfully applied to axisymmetric heat-releasing porous beds 

(conical, cylindrical, mound-shaped) in [13, 14, 15, 16] with simulations performed on the basis 

of Reed’s drag model. It was shown that, with properly defined shape functions   (depending, 

for example, on the slope angle of bed surface), non-dimensional dryout heat fluxes 0  obtained 
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for different particle diameters, porosity, and system pressure, collapse to the same curve as in 

1D case. Generalization of this approach to other drag models, and finding representations for 

the shape functions will be carried out in our future work. 

 

6. CONCLUSIONS 

The analysis of dryout conditions performed in this paper enabled us to obtain the general 

functional form of the dryout heat flux, applicable to internally heated porous beds of various 

shapes. We considered three drag models available in the literature, validated and widely applied 

to coolability studies. The main focus of the current paper was to find an efficient way of dryout 

heat flux calculation. For the well-known problem of dryout heat flux for a one-dimensional top-

flooded porous bed, a set of analytical approximating formulas was obtained offering a 

computationally efficient model. 

The real advantages of the proposed approach are connected with development of 

surrogate models for coolability of multidimensional porous beds. This enables Monte Carlo 

simulations for quantification of uncertainty in application to assessment of severe accident risk, 

substituting computationally expensive numerical models with fast surrogate models. Previous 

experience gained with numerical results obtained for Reed’s drag model indicates that the 

approximating functions obtained for 1D problem can be re-used as a part of such surrogate 

model for multidimensional beds. Applicability of this approach to other drag models has yet to 

be studied, and relevant shape factor functions have yet to be derived in a form allowing their 

application for safety analysis and other engineering purposes. 
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NOMENCLATURE 

 

0a , 0b , 0c , 0d  coefficients in best-fit approximation (47) for 0  (–) 

a , b , c , d  coefficients in best-fit approximation (47) for   (–) 

c  exponent in variable transformation (45) (–) 

1 2,C C  constants in the interfacial drag model [7, 8] (–) 

Ca  capillary number (–) 

DHF  dryout heat flux (W/m
2
) 

bD  bubble diameter (m) 

d  particle diameter (m) 

d  characteristic pore size (m) 
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F  drag force per unit volume (N/m
3
) 

Fr  Froude number 

, g g g  gravity acceleration vector and absolute value (m/s
2
)  

H  porous bed height (m) 

evH  latent heat of evaporation (J/kg) 

1J , 2J , J
 characteristic superficial velocities (m/s) 

ij  superficial velocity of i-th phase (m/s) 

K  permeability (m
2
) 

riK  relative permeability of i-th phase (–) 

L  length (m) 

n  exponent in relative permeability 

m  exponent in relative passability 

P  pressure (Pa) 

sysP  prevailing system pressure (bar) 

Q volumetric heat release rate (W/m
3
) 

q  non-dimensional heat flux (–) 

DHFq  non-dimensional dryout heat flux (–) 

sT  saturation temperature (K) 

rV  relative phase velocity (m/s) 

W specific heating power (W/kg) 

Greek  

  void fraction, v   (–) 

i  volume fraction of i-th phase (–) 

* , 1 4   boundaries between flow regimes in models [6–8] (–) 

  evaporation rate (kg/m
3
·s) 

  ratio of bubble and particle diameters (–) 

  porosity (–) 

  passability (m) 

ri  relative passability of i-th phase (–) 

i  dynamic viscosity of i-th phase (Pa·s) 

G  set of geometry-specific parameters 

M  set of model-specific parameters 

i  density of i-th phase (kg/m
3
) 

s  solid material density (kg/m
3
) 

  surface tension (N/m) 

  functional form of DHFq  (–) 

0 ,   asymptotic form of   at small and large   
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  non-dimensional porous medium drag parameter (–) 

0  coefficient in variable transformation (45) (–) 

  shape-specific function for multidimensional porous bed 

Subscripts 

i , j phase (either l or v) 

l  liquid 

v  gas phase (vapor) 

Superscripts 

* scale 

m  modified value in drag model [8] 

max  maximum value 

top top horizontal cross-section of porous bed 

Accents  

~ non-dimensional quantity 

^ rescaled non-dimensional quantities 

– transformed variable in fitting formula 
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