Coordinateless description and deformation principle as foundations of physical geometry

 Yuri A. Rylov

Institute for Problems in Mechanics, Russian Academy of Sciences
 101-1 ,Vernadskii Ave., Moscow, 119526, Russia
 email: rylov@ipmnet.ru
 Web site: http://rsfq1.physics.sunysb.edu/~rylov/yrylov.htm
or mirror Web site: http://gas-dyn.ipmnet.ru/~rylov/yrylov.htm

Updated September 1, 2007

abstract

Physical geometry studies mutual disposition of geometrical objects and points in space, or space-time, which is described by the distance function $d$, or by the world function $\sigma =d^{2}/2$. One suggests a new general method of the physical geometry construction. The proper Euclidean geometry is described in terms of its world function $\sigma _{\mathrm{E}}$. Any physical geometry $\mathcal{G}$ is obtained from the Euclidean geometry as a result of replacement of the Euclidean world function $\sigma _{\mathrm{E}}$ by the world function $\sigma $ of $\mathcal{G}$. This method is very simple and effective. It introduces a new geometric property: nondegeneracy of geometry. Using this method, one can construct deterministic space-time geometries with primordially stochastic motion of free particles and geometrized particle mass. Such a space-time geometry defined properly (with quantum constant as an attribute of geometry) allows one to explain quantum effects as a result of the statistical description of the stochastic particle motion (without a use of quantum principles).

There is text of the paper in English  and in Russian